静态输出反馈极点放置通过参数依赖Ackermann和Greville矩阵公式。

IF 6.5
Abdulrahman H Bajodah, Hassen Mibar
{"title":"静态输出反馈极点放置通过参数依赖Ackermann和Greville矩阵公式。","authors":"Abdulrahman H Bajodah, Hassen Mibar","doi":"10.1016/j.isatra.2025.09.017","DOIUrl":null,"url":null,"abstract":"<p><p>The paper generalizes Ackermann's pole placement methodology to static output feedback pole placement (SOFPP) for general MIMO continuous LTI systems. The main tool used is Moore-Penrose generalized inversion of Kalman controllability matrix, which replaces square inversion that is performed in the original Ackermann's formulation for single input controllable systems. Additionally, affine and partially explicit parameterization of the accompanying nonempty controllability matrix nullspace is utilized to characterize solution non uniqueness of the MIMO SOFPP control problem and to solve for SOFPP feedback control gains. The proposed nullspace parameterization is inspired by the vector Greville formula for general solutions of linear algebraic equations, and it extends the formula to solve parameter-dependent (PD) linear matrix equations. The redundant nullspace parameterizing variables in the PD matrix Greville formula are constrained such that the closed loop system matrix satisfies its characteristic equation. Necessary and sufficient conditions for SOFPP solution existence are derived for general (possibly uncontrollable) continuous LTI systems, regardless of dimensionalities and ranks of system triplet and controllability matrices, and regardless of spectral multiplicities of the open loop system matrix and the sought closed loop system matrix. If an SOFPP control problem is solvable then all its control matrix gain solutions are synthesized partially explicitly via affine parameterization in terms of the constrained nullspace parameterizing variables. Five examples are provided to illustrate the proposed SOFPP control system analysis and design methodology.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static output feedback pole placement via parameter-dependent Ackermann and Greville matrix formulae.\",\"authors\":\"Abdulrahman H Bajodah, Hassen Mibar\",\"doi\":\"10.1016/j.isatra.2025.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper generalizes Ackermann's pole placement methodology to static output feedback pole placement (SOFPP) for general MIMO continuous LTI systems. The main tool used is Moore-Penrose generalized inversion of Kalman controllability matrix, which replaces square inversion that is performed in the original Ackermann's formulation for single input controllable systems. Additionally, affine and partially explicit parameterization of the accompanying nonempty controllability matrix nullspace is utilized to characterize solution non uniqueness of the MIMO SOFPP control problem and to solve for SOFPP feedback control gains. The proposed nullspace parameterization is inspired by the vector Greville formula for general solutions of linear algebraic equations, and it extends the formula to solve parameter-dependent (PD) linear matrix equations. The redundant nullspace parameterizing variables in the PD matrix Greville formula are constrained such that the closed loop system matrix satisfies its characteristic equation. Necessary and sufficient conditions for SOFPP solution existence are derived for general (possibly uncontrollable) continuous LTI systems, regardless of dimensionalities and ranks of system triplet and controllability matrices, and regardless of spectral multiplicities of the open loop system matrix and the sought closed loop system matrix. If an SOFPP control problem is solvable then all its control matrix gain solutions are synthesized partially explicitly via affine parameterization in terms of the constrained nullspace parameterizing variables. Five examples are provided to illustrate the proposed SOFPP control system analysis and design methodology.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.09.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.09.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将Ackermann极点配置方法推广到一般MIMO连续LTI系统的静态输出反馈极点配置。主要使用的工具是卡尔曼可控性矩阵的Moore-Penrose广义反演,它取代了原始Ackermann公式中对单输入可控系统进行的平方反演。此外,利用伴随的非空可控性矩阵零空间的仿射和部分显式参数化来表征MIMO SOFPP控制问题的解非唯一性,并求解SOFPP反馈控制增益。本文提出的零空间参数化是受线性代数方程通解的矢量Greville公式的启发,并将该公式推广到求解参数相关线性矩阵方程。对PD矩阵Greville公式中的冗余零空间参数化变量进行约束,使闭环系统矩阵满足其特征方程。对于一般(可能不可控的)连续LTI系统,无论系统三重矩阵和可控性矩阵的维数和阶数如何,也无论开环系统矩阵和所求闭环系统矩阵的谱多重度如何,都推导出SOFPP解存在的充分必要条件。如果一个SOFPP控制问题是可解的,那么它的所有控制矩阵增益解都是通过仿射参数化在约束的零空间参数化变量中部分显式合成的。给出了五个实例来说明所提出的SOFPP控制系统的分析和设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static output feedback pole placement via parameter-dependent Ackermann and Greville matrix formulae.

The paper generalizes Ackermann's pole placement methodology to static output feedback pole placement (SOFPP) for general MIMO continuous LTI systems. The main tool used is Moore-Penrose generalized inversion of Kalman controllability matrix, which replaces square inversion that is performed in the original Ackermann's formulation for single input controllable systems. Additionally, affine and partially explicit parameterization of the accompanying nonempty controllability matrix nullspace is utilized to characterize solution non uniqueness of the MIMO SOFPP control problem and to solve for SOFPP feedback control gains. The proposed nullspace parameterization is inspired by the vector Greville formula for general solutions of linear algebraic equations, and it extends the formula to solve parameter-dependent (PD) linear matrix equations. The redundant nullspace parameterizing variables in the PD matrix Greville formula are constrained such that the closed loop system matrix satisfies its characteristic equation. Necessary and sufficient conditions for SOFPP solution existence are derived for general (possibly uncontrollable) continuous LTI systems, regardless of dimensionalities and ranks of system triplet and controllability matrices, and regardless of spectral multiplicities of the open loop system matrix and the sought closed loop system matrix. If an SOFPP control problem is solvable then all its control matrix gain solutions are synthesized partially explicitly via affine parameterization in terms of the constrained nullspace parameterizing variables. Five examples are provided to illustrate the proposed SOFPP control system analysis and design methodology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信