{"title":"两性离子单体聚合对水动力学的影响:由差示扫描量热法和太赫兹光谱支持的分子动力学模拟研究","authors":"Md Abu Saleh, Yuji Higuchi, Shohei Shiomoto, Takahisa Anada, Mafumi Hishida, Masaru Tanaka","doi":"10.1038/s41428-025-01066-0","DOIUrl":null,"url":null,"abstract":"The behavior of water molecules significantly influences the effectiveness of protein stabilizers and biomaterials. Although the polymerization of low-molecular-weight molecules enhances their functionality, the hydration states and water dynamics around polymers and small molecules are typically examined separately. Therefore, the effect of polymerization on water dynamics at the molecular level remains unclear. By density functional tight-binding molecular dynamics (DFTB-MD) simulations of five zwitterionic solute solutions, (trimethylamine N-oxide) (TMAO), the N-[3-(dimethylamino)propyl]acrylamide N-oxide (DMAO) monomer, poly(N-[3-(dimethylamino)propyl]acrylamide N-oxide) (PDMAO), the 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer, and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the effects of polymerization on water dynamics were investigated. DMAO and MPC polymerization (to PDMAO and PMPC, respectively) promote the slow and rapid rotation of water molecules, respectively. In PDMAO, water molecules are trapped between side chains due to the formation of hydrogen bonds between water and PDMAO, resulting in slow water dynamics, whereas in PMPC, a reduction in the solvent-accessible surface area due to polymerization disrupts the hydrogen-bond network among the water molecules, resulting in acceleration of the rotational dynamics of water molecules. The hydration amount determined using differential scanning calorimetry (DSC) and terahertz time-domain spectroscopy (THz-TDS) is consistent with the MD simulation results, which provide molecular-level insights that advance the current understanding of water dynamics in small-molecule polymerization for potential functional enhancement. Caption: A different effect of polymerization on water dynamics: water molecules trapped by the side chains exhibit slow dynamics, whereas water dynamics is accelerated without the trap.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 10","pages":"1127-1139"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41428-025-01066-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of zwitterionic monomer polymerization on water dynamics: a molecular dynamics simulation study supported by differential scanning calorimetry and terahertz spectroscopy\",\"authors\":\"Md Abu Saleh, Yuji Higuchi, Shohei Shiomoto, Takahisa Anada, Mafumi Hishida, Masaru Tanaka\",\"doi\":\"10.1038/s41428-025-01066-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The behavior of water molecules significantly influences the effectiveness of protein stabilizers and biomaterials. Although the polymerization of low-molecular-weight molecules enhances their functionality, the hydration states and water dynamics around polymers and small molecules are typically examined separately. Therefore, the effect of polymerization on water dynamics at the molecular level remains unclear. By density functional tight-binding molecular dynamics (DFTB-MD) simulations of five zwitterionic solute solutions, (trimethylamine N-oxide) (TMAO), the N-[3-(dimethylamino)propyl]acrylamide N-oxide (DMAO) monomer, poly(N-[3-(dimethylamino)propyl]acrylamide N-oxide) (PDMAO), the 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer, and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the effects of polymerization on water dynamics were investigated. DMAO and MPC polymerization (to PDMAO and PMPC, respectively) promote the slow and rapid rotation of water molecules, respectively. In PDMAO, water molecules are trapped between side chains due to the formation of hydrogen bonds between water and PDMAO, resulting in slow water dynamics, whereas in PMPC, a reduction in the solvent-accessible surface area due to polymerization disrupts the hydrogen-bond network among the water molecules, resulting in acceleration of the rotational dynamics of water molecules. The hydration amount determined using differential scanning calorimetry (DSC) and terahertz time-domain spectroscopy (THz-TDS) is consistent with the MD simulation results, which provide molecular-level insights that advance the current understanding of water dynamics in small-molecule polymerization for potential functional enhancement. Caption: A different effect of polymerization on water dynamics: water molecules trapped by the side chains exhibit slow dynamics, whereas water dynamics is accelerated without the trap.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"57 10\",\"pages\":\"1127-1139\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.comhttps://www.nature.com/articles/s41428-025-01066-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-025-01066-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-025-01066-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of zwitterionic monomer polymerization on water dynamics: a molecular dynamics simulation study supported by differential scanning calorimetry and terahertz spectroscopy
The behavior of water molecules significantly influences the effectiveness of protein stabilizers and biomaterials. Although the polymerization of low-molecular-weight molecules enhances their functionality, the hydration states and water dynamics around polymers and small molecules are typically examined separately. Therefore, the effect of polymerization on water dynamics at the molecular level remains unclear. By density functional tight-binding molecular dynamics (DFTB-MD) simulations of five zwitterionic solute solutions, (trimethylamine N-oxide) (TMAO), the N-[3-(dimethylamino)propyl]acrylamide N-oxide (DMAO) monomer, poly(N-[3-(dimethylamino)propyl]acrylamide N-oxide) (PDMAO), the 2-methacryloyloxyethyl phosphorylcholine (MPC) monomer, and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the effects of polymerization on water dynamics were investigated. DMAO and MPC polymerization (to PDMAO and PMPC, respectively) promote the slow and rapid rotation of water molecules, respectively. In PDMAO, water molecules are trapped between side chains due to the formation of hydrogen bonds between water and PDMAO, resulting in slow water dynamics, whereas in PMPC, a reduction in the solvent-accessible surface area due to polymerization disrupts the hydrogen-bond network among the water molecules, resulting in acceleration of the rotational dynamics of water molecules. The hydration amount determined using differential scanning calorimetry (DSC) and terahertz time-domain spectroscopy (THz-TDS) is consistent with the MD simulation results, which provide molecular-level insights that advance the current understanding of water dynamics in small-molecule polymerization for potential functional enhancement. Caption: A different effect of polymerization on water dynamics: water molecules trapped by the side chains exhibit slow dynamics, whereas water dynamics is accelerated without the trap.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.