单片碳电极飞秒激光表面功能化研究

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY
Yuxiao Ding, Thomas Gimpel, Alexander Klyushin, Sebastian Tigges, Yuying Dang, Michael Poschmann, Feihong Song, Robert Schlögl, Saskia Heumann
{"title":"单片碳电极飞秒激光表面功能化研究","authors":"Yuxiao Ding,&nbsp;Thomas Gimpel,&nbsp;Alexander Klyushin,&nbsp;Sebastian Tigges,&nbsp;Yuying Dang,&nbsp;Michael Poschmann,&nbsp;Feihong Song,&nbsp;Robert Schlögl,&nbsp;Saskia Heumann","doi":"10.1002/celc.202500189","DOIUrl":null,"url":null,"abstract":"<p>Carbon materials are promising to fulfill the worldwide need for advanced materials in many areas, particularly in electrochemical applications. However, achieving both high conductivity and surface functionalization in carbon electrodes remains a significant challenge. Herein, a scalable, sustainable, binder-free carbon disc electrode is developed in the desired size and shape. Subsequent femtosecond laser treatment introduces surface functionalization with pyrrolic and pyridinic nitrogen species (up to 12.6 at%, as determined by X-ray photoelectron spectroscopy) while preserving the bulk crystallinity and conductivity of the electrode. The laser-treated surfaces exhibit superhydrophilicity (water contact angle of 0°) and oleophilicity (0° for n-heptane, 25° for n-heptadecane), enabling enhanced interaction with electrolytes and anchoring of metal species like iron ions. Electrochemical impedance spectroscopy confirms minimal resistance (≤10 Ω) in 0.1M KOH, even after functionalization. The functionalized electrodes demonstrate improved stability in oxygen evolution reaction tests, with laser-treated samples showing 300–500 mV higher activity than untreated counterparts when Fe-impregnated. This work establishes a simple, industrial-scale method for creating multifunctional carbon electrodes with tailored surface properties, bridging the gap between material sustainability and electrochemical performance.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500189","citationCount":"0","resultStr":"{\"title\":\"Surficial Functionalization of Monolithic Carbon Electrode via Femtosecond Laser Treatment\",\"authors\":\"Yuxiao Ding,&nbsp;Thomas Gimpel,&nbsp;Alexander Klyushin,&nbsp;Sebastian Tigges,&nbsp;Yuying Dang,&nbsp;Michael Poschmann,&nbsp;Feihong Song,&nbsp;Robert Schlögl,&nbsp;Saskia Heumann\",\"doi\":\"10.1002/celc.202500189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon materials are promising to fulfill the worldwide need for advanced materials in many areas, particularly in electrochemical applications. However, achieving both high conductivity and surface functionalization in carbon electrodes remains a significant challenge. Herein, a scalable, sustainable, binder-free carbon disc electrode is developed in the desired size and shape. Subsequent femtosecond laser treatment introduces surface functionalization with pyrrolic and pyridinic nitrogen species (up to 12.6 at%, as determined by X-ray photoelectron spectroscopy) while preserving the bulk crystallinity and conductivity of the electrode. The laser-treated surfaces exhibit superhydrophilicity (water contact angle of 0°) and oleophilicity (0° for n-heptane, 25° for n-heptadecane), enabling enhanced interaction with electrolytes and anchoring of metal species like iron ions. Electrochemical impedance spectroscopy confirms minimal resistance (≤10 Ω) in 0.1M KOH, even after functionalization. The functionalized electrodes demonstrate improved stability in oxygen evolution reaction tests, with laser-treated samples showing 300–500 mV higher activity than untreated counterparts when Fe-impregnated. This work establishes a simple, industrial-scale method for creating multifunctional carbon electrodes with tailored surface properties, bridging the gap between material sustainability and electrochemical performance.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500189\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500189","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

碳材料有望满足世界上许多领域对先进材料的需求,特别是在电化学应用方面。然而,在碳电极中实现高导电性和表面功能化仍然是一个重大挑战。在此,一种可扩展的,可持续的,无粘合剂的碳圆盘电极被开发在所需的尺寸和形状。随后的飞秒激光处理引入了吡咯和吡啶氮的表面功能化(高达12.6 at%,由x射线光电子能谱测定),同时保持了电极的整体结晶度和导电性。激光处理的表面表现出超亲水性(水接触角为0°)和亲油性(正庚烷为0°,正十七烷为25°),增强了与电解质的相互作用,并锚定了铁离子等金属。电化学阻抗谱证实,在0.1M KOH下,即使经过功能化,电阻也最小(≤10 Ω)。功能化电极在析氧反应测试中表现出更好的稳定性,当铁浸渍时,激光处理样品的活性比未处理样品高300-500 mV。这项工作建立了一种简单的、工业规模的方法,用于制造具有定制表面特性的多功能碳电极,弥合了材料可持续性和电化学性能之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surficial Functionalization of Monolithic Carbon Electrode via Femtosecond Laser Treatment

Surficial Functionalization of Monolithic Carbon Electrode via Femtosecond Laser Treatment

Carbon materials are promising to fulfill the worldwide need for advanced materials in many areas, particularly in electrochemical applications. However, achieving both high conductivity and surface functionalization in carbon electrodes remains a significant challenge. Herein, a scalable, sustainable, binder-free carbon disc electrode is developed in the desired size and shape. Subsequent femtosecond laser treatment introduces surface functionalization with pyrrolic and pyridinic nitrogen species (up to 12.6 at%, as determined by X-ray photoelectron spectroscopy) while preserving the bulk crystallinity and conductivity of the electrode. The laser-treated surfaces exhibit superhydrophilicity (water contact angle of 0°) and oleophilicity (0° for n-heptane, 25° for n-heptadecane), enabling enhanced interaction with electrolytes and anchoring of metal species like iron ions. Electrochemical impedance spectroscopy confirms minimal resistance (≤10 Ω) in 0.1M KOH, even after functionalization. The functionalized electrodes demonstrate improved stability in oxygen evolution reaction tests, with laser-treated samples showing 300–500 mV higher activity than untreated counterparts when Fe-impregnated. This work establishes a simple, industrial-scale method for creating multifunctional carbon electrodes with tailored surface properties, bridging the gap between material sustainability and electrochemical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信