M. Maliha, M. Alsmadi, D. Sample, T. Wynn-Thompson, A. Miller
{"title":"环境场地设计与传统蓄水池式雨水管理的定量评估:对马里兰州巴尔的摩Minebank Run流域水文的影响","authors":"M. Maliha, M. Alsmadi, D. Sample, T. Wynn-Thompson, A. Miller","doi":"10.1002/hyp.70268","DOIUrl":null,"url":null,"abstract":"<p>Environmental site design (ESD) is a stormwater management approach that prioritises the use of infiltration-based non-structural techniques to mimic the natural hydrologic cycle by reducing impervious surfaces, slowing runoff and increasing infiltration. Traditional storage-based stormwater management is designed for flood control by quickly diverting runoff from developed areas. This study compared the effect of ESD and only storage-based stormwater management practices on the hydrology of an urban watershed in Baltimore County, Maryland, USA. Minebank Run is an 8.47 km<sup>2</sup> flashy urban stream with a catchment largely developed without stormwater management. A calibrated SWMM model was used to simulate changes in catchment hydrology resulting from ESD and detention basins over a 54-year period, from the onset of urbanisation in 1948 to the state of urbanisation in 2001. This approach offers a novel, retrospective perspective by simulating how the watershed hydrology might have changed if ESD had been implemented from the beginning of urban development. The model results were analysed by quantifying and comparing different hydrologic metrics to evaluate runoff quantity and flow variability. Results indicated that although storage ponds performed similarly to ESD in reducing annual maximum peak flows (43% vs. 45% reduction, respectively), ESD reduced mean annual runoff coefficients significantly more than ponds (28% vs. 2.7%, <i>p</i> < 0.0001). The Richards–Baker Flashiness Index was reduced from 0.46 to 0.32 with the implementation of ESD, as compared to 0.36 with detention ponds. This study also tested the hypothesis that the impact of urbanisation on the hydrology of the Minebank Run watershed would have been reduced if it had been developed with ESD. The results indicated that the implementation of ESD would have reduced annual maximum peak flows by an average of 46%, annual mean runoff coefficients by 51% and the Richards–Baker Flashiness Index by 37%, as compared to the as-is condition. The study provides quantitative insights into the performance of traditional and innovative stormwater management techniques at the catchment scale, illustrating the benefits of a combination of both infiltration practices and detention storage in reducing the hydrologic impacts of urbanisation.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"39 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70268","citationCount":"0","resultStr":"{\"title\":\"Quantitative Assessment of Environmental Site Design vs. Traditional Storage-Based Stormwater Management: Impacts on Catchment Hydrology of Minebank Run, Baltimore, MD\",\"authors\":\"M. Maliha, M. Alsmadi, D. Sample, T. Wynn-Thompson, A. Miller\",\"doi\":\"10.1002/hyp.70268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmental site design (ESD) is a stormwater management approach that prioritises the use of infiltration-based non-structural techniques to mimic the natural hydrologic cycle by reducing impervious surfaces, slowing runoff and increasing infiltration. Traditional storage-based stormwater management is designed for flood control by quickly diverting runoff from developed areas. This study compared the effect of ESD and only storage-based stormwater management practices on the hydrology of an urban watershed in Baltimore County, Maryland, USA. Minebank Run is an 8.47 km<sup>2</sup> flashy urban stream with a catchment largely developed without stormwater management. A calibrated SWMM model was used to simulate changes in catchment hydrology resulting from ESD and detention basins over a 54-year period, from the onset of urbanisation in 1948 to the state of urbanisation in 2001. This approach offers a novel, retrospective perspective by simulating how the watershed hydrology might have changed if ESD had been implemented from the beginning of urban development. The model results were analysed by quantifying and comparing different hydrologic metrics to evaluate runoff quantity and flow variability. Results indicated that although storage ponds performed similarly to ESD in reducing annual maximum peak flows (43% vs. 45% reduction, respectively), ESD reduced mean annual runoff coefficients significantly more than ponds (28% vs. 2.7%, <i>p</i> < 0.0001). The Richards–Baker Flashiness Index was reduced from 0.46 to 0.32 with the implementation of ESD, as compared to 0.36 with detention ponds. This study also tested the hypothesis that the impact of urbanisation on the hydrology of the Minebank Run watershed would have been reduced if it had been developed with ESD. The results indicated that the implementation of ESD would have reduced annual maximum peak flows by an average of 46%, annual mean runoff coefficients by 51% and the Richards–Baker Flashiness Index by 37%, as compared to the as-is condition. The study provides quantitative insights into the performance of traditional and innovative stormwater management techniques at the catchment scale, illustrating the benefits of a combination of both infiltration practices and detention storage in reducing the hydrologic impacts of urbanisation.</p>\",\"PeriodicalId\":13189,\"journal\":{\"name\":\"Hydrological Processes\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Processes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70268\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70268","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
Quantitative Assessment of Environmental Site Design vs. Traditional Storage-Based Stormwater Management: Impacts on Catchment Hydrology of Minebank Run, Baltimore, MD
Environmental site design (ESD) is a stormwater management approach that prioritises the use of infiltration-based non-structural techniques to mimic the natural hydrologic cycle by reducing impervious surfaces, slowing runoff and increasing infiltration. Traditional storage-based stormwater management is designed for flood control by quickly diverting runoff from developed areas. This study compared the effect of ESD and only storage-based stormwater management practices on the hydrology of an urban watershed in Baltimore County, Maryland, USA. Minebank Run is an 8.47 km2 flashy urban stream with a catchment largely developed without stormwater management. A calibrated SWMM model was used to simulate changes in catchment hydrology resulting from ESD and detention basins over a 54-year period, from the onset of urbanisation in 1948 to the state of urbanisation in 2001. This approach offers a novel, retrospective perspective by simulating how the watershed hydrology might have changed if ESD had been implemented from the beginning of urban development. The model results were analysed by quantifying and comparing different hydrologic metrics to evaluate runoff quantity and flow variability. Results indicated that although storage ponds performed similarly to ESD in reducing annual maximum peak flows (43% vs. 45% reduction, respectively), ESD reduced mean annual runoff coefficients significantly more than ponds (28% vs. 2.7%, p < 0.0001). The Richards–Baker Flashiness Index was reduced from 0.46 to 0.32 with the implementation of ESD, as compared to 0.36 with detention ponds. This study also tested the hypothesis that the impact of urbanisation on the hydrology of the Minebank Run watershed would have been reduced if it had been developed with ESD. The results indicated that the implementation of ESD would have reduced annual maximum peak flows by an average of 46%, annual mean runoff coefficients by 51% and the Richards–Baker Flashiness Index by 37%, as compared to the as-is condition. The study provides quantitative insights into the performance of traditional and innovative stormwater management techniques at the catchment scale, illustrating the benefits of a combination of both infiltration practices and detention storage in reducing the hydrologic impacts of urbanisation.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.