{"title":"提高质子交换膜耐久性的性能敏感共添加剂方法:钨氧化物和铈离子的作用","authors":"Kazuma Shinozaki, Naohiro Hoshikawa, Kyoko Tsusaka, Akitoshi Suzumura, Akihiro Shinohara, Shinya Morishita, Yuji Kamitaka, Kosuke Kitazumi, Naoki Kitano","doi":"10.1002/celc.202500214","DOIUrl":null,"url":null,"abstract":"<p>To improve the chemical durability of proton exchange membrane fuel cells (PEMFCs) while imposing minimal performance penalties, the effects of simultaneously incorporating tungsten oxide (WO<sub><i>x</i></sub>) and cerium (Ce) ions into the membrane are evaluated. Open-circuit voltage (OCV) hold tests are conducted using Nafion membranes containing Ce ions alone, WO<sub><i>x</i></sub> alone, or both. The combination of Ce<sup>3+</sup>, a hydroxyl radical scavenger, and WO<sub><i>x</i></sub>, a hydrogen peroxide decomposition catalyst with high stability and immobility under acidic conditions, achieves a degradation suppression effect that is consistent with the product of their individual contributions. The distinct mitigation mechanisms of Ce ions and WO<sub><i>x</i></sub> are supported by ex situ H<sub>2</sub>O<sub>2</sub> decomposition experiments and membrane molecular weight analysis. No marked initial performance loss is observed with WO<sub><i>x</i></sub> addition. These results indicate that the use of WO<sub><i>x</i></sub> allows for reduced Ce ion loading and that it mitigates negative effects associated with Ce ion mobility. The combined use of suppressants that target different degradation pathways presents a promising strategy for achieving high membrane durability with minimal performance tradeoffs.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500214","citationCount":"0","resultStr":"{\"title\":\"Performance-Conscious Coadditive Approach for Enhancing Proton Exchange Membrane Durability: Roles of Tungsten Oxides and Cerium Ions\",\"authors\":\"Kazuma Shinozaki, Naohiro Hoshikawa, Kyoko Tsusaka, Akitoshi Suzumura, Akihiro Shinohara, Shinya Morishita, Yuji Kamitaka, Kosuke Kitazumi, Naoki Kitano\",\"doi\":\"10.1002/celc.202500214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the chemical durability of proton exchange membrane fuel cells (PEMFCs) while imposing minimal performance penalties, the effects of simultaneously incorporating tungsten oxide (WO<sub><i>x</i></sub>) and cerium (Ce) ions into the membrane are evaluated. Open-circuit voltage (OCV) hold tests are conducted using Nafion membranes containing Ce ions alone, WO<sub><i>x</i></sub> alone, or both. The combination of Ce<sup>3+</sup>, a hydroxyl radical scavenger, and WO<sub><i>x</i></sub>, a hydrogen peroxide decomposition catalyst with high stability and immobility under acidic conditions, achieves a degradation suppression effect that is consistent with the product of their individual contributions. The distinct mitigation mechanisms of Ce ions and WO<sub><i>x</i></sub> are supported by ex situ H<sub>2</sub>O<sub>2</sub> decomposition experiments and membrane molecular weight analysis. No marked initial performance loss is observed with WO<sub><i>x</i></sub> addition. These results indicate that the use of WO<sub><i>x</i></sub> allows for reduced Ce ion loading and that it mitigates negative effects associated with Ce ion mobility. The combined use of suppressants that target different degradation pathways presents a promising strategy for achieving high membrane durability with minimal performance tradeoffs.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500214\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500214\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500214","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Performance-Conscious Coadditive Approach for Enhancing Proton Exchange Membrane Durability: Roles of Tungsten Oxides and Cerium Ions
To improve the chemical durability of proton exchange membrane fuel cells (PEMFCs) while imposing minimal performance penalties, the effects of simultaneously incorporating tungsten oxide (WOx) and cerium (Ce) ions into the membrane are evaluated. Open-circuit voltage (OCV) hold tests are conducted using Nafion membranes containing Ce ions alone, WOx alone, or both. The combination of Ce3+, a hydroxyl radical scavenger, and WOx, a hydrogen peroxide decomposition catalyst with high stability and immobility under acidic conditions, achieves a degradation suppression effect that is consistent with the product of their individual contributions. The distinct mitigation mechanisms of Ce ions and WOx are supported by ex situ H2O2 decomposition experiments and membrane molecular weight analysis. No marked initial performance loss is observed with WOx addition. These results indicate that the use of WOx allows for reduced Ce ion loading and that it mitigates negative effects associated with Ce ion mobility. The combined use of suppressants that target different degradation pathways presents a promising strategy for achieving high membrane durability with minimal performance tradeoffs.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.