Christopher Kent, Alex Knowles, Ailbe Ó Manacháin, Colm O’Dwyer, Dara Fitzpatrick
{"title":"在析氢和析氧反应过程中优化气体演化的Operando声光谱","authors":"Christopher Kent, Alex Knowles, Ailbe Ó Manacháin, Colm O’Dwyer, Dara Fitzpatrick","doi":"10.1002/celc.202500215","DOIUrl":null,"url":null,"abstract":"<p>The use of earth-abundant materials for novel electrodes for solar-driven electrolysis will play a significant role in the future production of hydrogen as a green energy source. The choice of electrolyte will play a major role in how efficient and stable future photoelectrochemical cells (PEC) operate. A new approach to determining PEC efficiency using broadband acoustic resonance dissolution spectroscopy (BARDS) is investigated to analyze the real-time production of hydrogen and oxygen at platinum electrodes in different electrolyte solutions. The parameters investigated include concentration of electrolyte, surface area of the electrode, and the potential applied to the cell. Herein, the suitability of neutral buffer as an electrolyte on a par with either acid or basic electrolytes is shown. This finding allows for the potential design of solar to hydrogen electrolysers which can operate under mild, neutral, and stable conditions using earth-abundant materials for hydrogen production. It is also shown how BARDS can readily visualize and track gas evolution in real-time and in situ in an open system without the need for gas collection. It is anticipated that the technique can be utilized in the future evaluation of newly developed electrode materials in terms of efficiency, stability, and life span.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500215","citationCount":"0","resultStr":"{\"title\":\"Operando Acoustic Spectroscopy for Optimizing Gas Evolution In Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Processes\",\"authors\":\"Christopher Kent, Alex Knowles, Ailbe Ó Manacháin, Colm O’Dwyer, Dara Fitzpatrick\",\"doi\":\"10.1002/celc.202500215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of earth-abundant materials for novel electrodes for solar-driven electrolysis will play a significant role in the future production of hydrogen as a green energy source. The choice of electrolyte will play a major role in how efficient and stable future photoelectrochemical cells (PEC) operate. A new approach to determining PEC efficiency using broadband acoustic resonance dissolution spectroscopy (BARDS) is investigated to analyze the real-time production of hydrogen and oxygen at platinum electrodes in different electrolyte solutions. The parameters investigated include concentration of electrolyte, surface area of the electrode, and the potential applied to the cell. Herein, the suitability of neutral buffer as an electrolyte on a par with either acid or basic electrolytes is shown. This finding allows for the potential design of solar to hydrogen electrolysers which can operate under mild, neutral, and stable conditions using earth-abundant materials for hydrogen production. It is also shown how BARDS can readily visualize and track gas evolution in real-time and in situ in an open system without the need for gas collection. It is anticipated that the technique can be utilized in the future evaluation of newly developed electrode materials in terms of efficiency, stability, and life span.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500215\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500215\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500215","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Operando Acoustic Spectroscopy for Optimizing Gas Evolution In Hydrogen Evolution Reaction and the Oxygen Evolution Reaction Processes
The use of earth-abundant materials for novel electrodes for solar-driven electrolysis will play a significant role in the future production of hydrogen as a green energy source. The choice of electrolyte will play a major role in how efficient and stable future photoelectrochemical cells (PEC) operate. A new approach to determining PEC efficiency using broadband acoustic resonance dissolution spectroscopy (BARDS) is investigated to analyze the real-time production of hydrogen and oxygen at platinum electrodes in different electrolyte solutions. The parameters investigated include concentration of electrolyte, surface area of the electrode, and the potential applied to the cell. Herein, the suitability of neutral buffer as an electrolyte on a par with either acid or basic electrolytes is shown. This finding allows for the potential design of solar to hydrogen electrolysers which can operate under mild, neutral, and stable conditions using earth-abundant materials for hydrogen production. It is also shown how BARDS can readily visualize and track gas evolution in real-time and in situ in an open system without the need for gas collection. It is anticipated that the technique can be utilized in the future evaluation of newly developed electrode materials in terms of efficiency, stability, and life span.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.