Liana Savintseva, Paul Neugebauer, Dmitry I. Sharapa, Philipp Röse, Ulrike Krewer, Felix Studt
{"title":"n -甲酰基吡咯烷的电化学顺氧化:从计算二茂铁电极模型和循环伏安法的机制见解","authors":"Liana Savintseva, Paul Neugebauer, Dmitry I. Sharapa, Philipp Röse, Ulrike Krewer, Felix Studt","doi":"10.1002/celc.202500202","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical processes are of particular interest in modern chemical technologies as they have numerous advantages over classical approaches. While computational support for investigating thermochemical reaction mechanisms is well established, there is still no consistent methodology for modeling electrochemical processes beyond the computational hydrogen electrode. This work addresses this gap through the study of the Shono-type oxidation of <i>N</i>-formylpyrrolidine. Combining density functional theory calculations, the concept of computational Fc<sup>+</sup>/Fc electrode, Marcus–Hush approach, and Butler–Volmer model, the reaction mechanism is elucidated, including the identification of the role and position of proton-coupled electron transfer process. Additionally, simulated cyclic voltammograms are in excellent agreement with experimental studies performed in parallel.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"12 19","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500202","citationCount":"0","resultStr":"{\"title\":\"The Electrochemical Shono Oxidation of N-Formylpyrrolidine: Mechanistic Insights from the Computational Ferrocene Electrode Model and Cyclic Voltammetry\",\"authors\":\"Liana Savintseva, Paul Neugebauer, Dmitry I. Sharapa, Philipp Röse, Ulrike Krewer, Felix Studt\",\"doi\":\"10.1002/celc.202500202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical processes are of particular interest in modern chemical technologies as they have numerous advantages over classical approaches. While computational support for investigating thermochemical reaction mechanisms is well established, there is still no consistent methodology for modeling electrochemical processes beyond the computational hydrogen electrode. This work addresses this gap through the study of the Shono-type oxidation of <i>N</i>-formylpyrrolidine. Combining density functional theory calculations, the concept of computational Fc<sup>+</sup>/Fc electrode, Marcus–Hush approach, and Butler–Volmer model, the reaction mechanism is elucidated, including the identification of the role and position of proton-coupled electron transfer process. Additionally, simulated cyclic voltammograms are in excellent agreement with experimental studies performed in parallel.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202500202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500202\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/celc.202500202","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
The Electrochemical Shono Oxidation of N-Formylpyrrolidine: Mechanistic Insights from the Computational Ferrocene Electrode Model and Cyclic Voltammetry
Electrochemical processes are of particular interest in modern chemical technologies as they have numerous advantages over classical approaches. While computational support for investigating thermochemical reaction mechanisms is well established, there is still no consistent methodology for modeling electrochemical processes beyond the computational hydrogen electrode. This work addresses this gap through the study of the Shono-type oxidation of N-formylpyrrolidine. Combining density functional theory calculations, the concept of computational Fc+/Fc electrode, Marcus–Hush approach, and Butler–Volmer model, the reaction mechanism is elucidated, including the identification of the role and position of proton-coupled electron transfer process. Additionally, simulated cyclic voltammograms are in excellent agreement with experimental studies performed in parallel.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.