蜂蜜介导的纳米银合成:理化表征和功能评价综述

IF 3.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
José de Oliveira Alves Júnior, Adrian Lima Roberto, Adenia Mirela Alves Nunes, João Augusto Oshiro Junior
{"title":"蜂蜜介导的纳米银合成:理化表征和功能评价综述","authors":"José de Oliveira Alves Júnior,&nbsp;Adrian Lima Roberto,&nbsp;Adenia Mirela Alves Nunes,&nbsp;João Augusto Oshiro Junior","doi":"10.1007/s10876-025-02914-y","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of silver nanoparticles with honey (H-AgNPs) has advanced by avoiding toxic reagents and harmful by products. Unlike other natural products, honey stands out for its practicality, eliminating the need for complex extraction processes and preservation steps. H-AgNPs possess distinct physicochemical properties, including optical and functional characteristics that can be enhanced by the presence of honey, making them promising candidates for applications in the pharmaceutical, chemical, and materials industries. This review begins with an examination of the synthesis parameters of H-AgNPs and the direct impact of variations in conditions on nanoparticle size, absorption spectra, and the main physicochemical characterization techniques employed to study these nanometals. Subsequently, the main applications of H-AgNPs were demonstrated in terms of their functional evaluations in biomedical fields and their contributions to materials engineering, thus demonstrating their promising potential observed in various in vitro and in vivo studies. The discussion also covers integration and the main challen ges encountered in scaling up production and advancing to clinical methods. However, there are still advantages to their use over other biosyntheses. Although H-AgNPs possess remarkable properties that make them suitable for a variety of applications, their synthesis continues to be hampered by limitations that go beyond current knowledge.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Honey-Mediated Synthesis of Silver Nanoparticles: A Review of Physicochemical Characterization and Functional Evaluations\",\"authors\":\"José de Oliveira Alves Júnior,&nbsp;Adrian Lima Roberto,&nbsp;Adenia Mirela Alves Nunes,&nbsp;João Augusto Oshiro Junior\",\"doi\":\"10.1007/s10876-025-02914-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synthesis of silver nanoparticles with honey (H-AgNPs) has advanced by avoiding toxic reagents and harmful by products. Unlike other natural products, honey stands out for its practicality, eliminating the need for complex extraction processes and preservation steps. H-AgNPs possess distinct physicochemical properties, including optical and functional characteristics that can be enhanced by the presence of honey, making them promising candidates for applications in the pharmaceutical, chemical, and materials industries. This review begins with an examination of the synthesis parameters of H-AgNPs and the direct impact of variations in conditions on nanoparticle size, absorption spectra, and the main physicochemical characterization techniques employed to study these nanometals. Subsequently, the main applications of H-AgNPs were demonstrated in terms of their functional evaluations in biomedical fields and their contributions to materials engineering, thus demonstrating their promising potential observed in various in vitro and in vivo studies. The discussion also covers integration and the main challen ges encountered in scaling up production and advancing to clinical methods. However, there are still advantages to their use over other biosyntheses. Although H-AgNPs possess remarkable properties that make them suitable for a variety of applications, their synthesis continues to be hampered by limitations that go beyond current knowledge.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02914-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02914-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

利用蜂蜜合成纳米银(H-AgNPs),避免了有毒试剂和有害副产物。与其他天然产品不同,蜂蜜因其实用性而脱颖而出,无需复杂的提取过程和保存步骤。H-AgNPs具有独特的物理化学性质,包括光学和功能特性,这些特性可以通过蜂蜜的存在而增强,这使得它们在制药、化学和材料工业中的应用前景广阔。本综述首先考察了H-AgNPs的合成参数,以及条件变化对纳米颗粒尺寸、吸收光谱的直接影响,以及用于研究这些纳米金属的主要物理化学表征技术。随后,介绍了H-AgNPs在生物医学领域的主要应用,以及它们对材料工程的贡献,从而展示了它们在各种体外和体内研究中观察到的巨大潜力。讨论还包括整合和在扩大生产和推进临床方法中遇到的主要挑战。然而,与其他生物合成相比,它们的使用仍然有优势。尽管H-AgNPs具有卓越的性能,使其适合各种应用,但它们的合成仍然受到超出当前知识的限制的阻碍。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Honey-Mediated Synthesis of Silver Nanoparticles: A Review of Physicochemical Characterization and Functional Evaluations

The synthesis of silver nanoparticles with honey (H-AgNPs) has advanced by avoiding toxic reagents and harmful by products. Unlike other natural products, honey stands out for its practicality, eliminating the need for complex extraction processes and preservation steps. H-AgNPs possess distinct physicochemical properties, including optical and functional characteristics that can be enhanced by the presence of honey, making them promising candidates for applications in the pharmaceutical, chemical, and materials industries. This review begins with an examination of the synthesis parameters of H-AgNPs and the direct impact of variations in conditions on nanoparticle size, absorption spectra, and the main physicochemical characterization techniques employed to study these nanometals. Subsequently, the main applications of H-AgNPs were demonstrated in terms of their functional evaluations in biomedical fields and their contributions to materials engineering, thus demonstrating their promising potential observed in various in vitro and in vivo studies. The discussion also covers integration and the main challen ges encountered in scaling up production and advancing to clinical methods. However, there are still advantages to their use over other biosyntheses. Although H-AgNPs possess remarkable properties that make them suitable for a variety of applications, their synthesis continues to be hampered by limitations that go beyond current knowledge.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信