通过黄花蒿协同工程Ag/CuO纳米颗粒:催化、抗菌和分子对接的观点

IF 3.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Nilesh T. Pandit, Avdhut D. Kadam, Avinash A. Survase, Vishvanath B. Ghanwat, Nilam S. Dhane, Priyank M. Shah, Santosh B. Kamble
{"title":"通过黄花蒿协同工程Ag/CuO纳米颗粒:催化、抗菌和分子对接的观点","authors":"Nilesh T. Pandit,&nbsp;Avdhut D. Kadam,&nbsp;Avinash A. Survase,&nbsp;Vishvanath B. Ghanwat,&nbsp;Nilam S. Dhane,&nbsp;Priyank M. Shah,&nbsp;Santosh B. Kamble","doi":"10.1007/s10876-025-02911-1","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of bimetallic nanoparticles using eco-friendly and sustainable methods has garnered significant attention in recent years due to their potential in diverse catalytic and biomedical applications. This study reports, for the first time, the green synthesis of Ag/CuO bimetallic nanoparticles using <i>Artemisia pallens</i> extract as a biogenic reducing and stabilizing agent, and demonstrates their superior catalytic performance in an eco-friendly Petasis reaction. The synthesized nanoparticles were characterized using various techniques, including XRD, SEM, EDX, and FTIR. The XRD analysis confirmed the crystalline Ag/CuO phases with peaks at 38.1° and 44.3° with an average size of 14.51 nm ± 1.00 nm, while SEM showed have flower-like morphology, EDX confirmed Ag, Mg, Si, Ca, C, O, and Cu presence, and FTIR indicated successful capping by <i>Artemisia pallens</i> phytochemicals. The Ag/CuO nanoparticles exhibited high catalytic efficiency under mild aqueous hydrotropic conditions, as reflected by excellent Reaction Mass Efficiency (RME) values (up to 79%) and notably low Process Mass Intensity (PMI) values (as Low as 14 g/g), clearly outperforming traditional methods that use organic solvents and mineral acids. The Turnover Number (TON) and Turnover Frequency (TOF) further emphasize their effectiveness and reusability for green organic synthesis. Additionally, the antibacterial activity of Ag/CuO nanoparticles was evaluated against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa using the agar disk diffusion method. The nanoparticles showed significant inhibition zones ranging from 14 to 20 mm, indicating strong antibacterial efficacy. Furthermore, molecular docking studies of indoline-derived arylglycine derivatives revealed strong binding interactions with the 5GS4 target protein, with Molecule 4f showing the highest affinity (MolDock Score: -114.278, Rerank Score: 90.5965), comparable to the standard drug spironolactone. This work highlights a sustainable approach for synthesizing functional bimetallic nanoparticles with dual applications in green catalysis and antimicrobial activity, contributing to advancements in environmentally friendly nanotechnology and synthetic methodologies.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Engineered Ag/CuO Nanoparticles Via Artemisia pallens: Catalytic, Antibacterial, and Molecular Docking Perspectives\",\"authors\":\"Nilesh T. Pandit,&nbsp;Avdhut D. Kadam,&nbsp;Avinash A. Survase,&nbsp;Vishvanath B. Ghanwat,&nbsp;Nilam S. Dhane,&nbsp;Priyank M. Shah,&nbsp;Santosh B. Kamble\",\"doi\":\"10.1007/s10876-025-02911-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synthesis of bimetallic nanoparticles using eco-friendly and sustainable methods has garnered significant attention in recent years due to their potential in diverse catalytic and biomedical applications. This study reports, for the first time, the green synthesis of Ag/CuO bimetallic nanoparticles using <i>Artemisia pallens</i> extract as a biogenic reducing and stabilizing agent, and demonstrates their superior catalytic performance in an eco-friendly Petasis reaction. The synthesized nanoparticles were characterized using various techniques, including XRD, SEM, EDX, and FTIR. The XRD analysis confirmed the crystalline Ag/CuO phases with peaks at 38.1° and 44.3° with an average size of 14.51 nm ± 1.00 nm, while SEM showed have flower-like morphology, EDX confirmed Ag, Mg, Si, Ca, C, O, and Cu presence, and FTIR indicated successful capping by <i>Artemisia pallens</i> phytochemicals. The Ag/CuO nanoparticles exhibited high catalytic efficiency under mild aqueous hydrotropic conditions, as reflected by excellent Reaction Mass Efficiency (RME) values (up to 79%) and notably low Process Mass Intensity (PMI) values (as Low as 14 g/g), clearly outperforming traditional methods that use organic solvents and mineral acids. The Turnover Number (TON) and Turnover Frequency (TOF) further emphasize their effectiveness and reusability for green organic synthesis. Additionally, the antibacterial activity of Ag/CuO nanoparticles was evaluated against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa using the agar disk diffusion method. The nanoparticles showed significant inhibition zones ranging from 14 to 20 mm, indicating strong antibacterial efficacy. Furthermore, molecular docking studies of indoline-derived arylglycine derivatives revealed strong binding interactions with the 5GS4 target protein, with Molecule 4f showing the highest affinity (MolDock Score: -114.278, Rerank Score: 90.5965), comparable to the standard drug spironolactone. This work highlights a sustainable approach for synthesizing functional bimetallic nanoparticles with dual applications in green catalysis and antimicrobial activity, contributing to advancements in environmentally friendly nanotechnology and synthetic methodologies.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02911-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02911-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

近年来,利用生态友好和可持续的方法合成双金属纳米颗粒由于其在多种催化和生物医学应用方面的潜力而引起了极大的关注。本研究首次报道了以黄蒿提取物为生物源还原稳定剂绿色合成Ag/CuO双金属纳米粒子,并证明了其在环保Petasis反应中的优异催化性能。利用XRD、SEM、EDX和FTIR等技术对合成的纳米颗粒进行了表征。XRD分析证实了银/铜的结晶相,峰位于38.1°和44.3°,平均尺寸为14.51 nm±1.00 nm, SEM显示为花状形态,EDX证实存在Ag、Mg、Si、Ca、C、O和Cu, FTIR表明黄蒿的植物化学物质成功封盖。Ag/CuO纳米颗粒在温和的亲水条件下表现出很高的催化效率,表现为优异的反应质量效率(RME)值(高达79%)和显著的低过程质量强度(PMI)值(低至14 g/g),明显优于使用有机溶剂和无机酸的传统方法。周转率(TON)和周转率(TOF)进一步强调了它们在绿色有机合成中的有效性和可重用性。此外,采用琼脂盘扩散法评价了Ag/CuO纳米颗粒对金黄色葡萄球菌、枯草芽孢杆菌、大肠杆菌和铜绿假单胞菌的抑菌活性。纳米颗粒在14 ~ 20 mm范围内表现出明显的抑制区,具有较强的抗菌效果。此外,吲哚衍生的芳基甘氨酸衍生物的分子对接研究显示,与5GS4靶蛋白有很强的结合作用,其中分子4f具有最高的亲和力(MolDock评分:-114.278,Rerank评分:90.5965),与标准药物螺内酯相当。这项工作强调了一种可持续的方法来合成功能性双金属纳米颗粒,在绿色催化和抗菌活性方面具有双重应用,有助于环境友好型纳米技术和合成方法的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Co-Engineered Ag/CuO Nanoparticles Via Artemisia pallens: Catalytic, Antibacterial, and Molecular Docking Perspectives

Co-Engineered Ag/CuO Nanoparticles Via Artemisia pallens: Catalytic, Antibacterial, and Molecular Docking Perspectives

The synthesis of bimetallic nanoparticles using eco-friendly and sustainable methods has garnered significant attention in recent years due to their potential in diverse catalytic and biomedical applications. This study reports, for the first time, the green synthesis of Ag/CuO bimetallic nanoparticles using Artemisia pallens extract as a biogenic reducing and stabilizing agent, and demonstrates their superior catalytic performance in an eco-friendly Petasis reaction. The synthesized nanoparticles were characterized using various techniques, including XRD, SEM, EDX, and FTIR. The XRD analysis confirmed the crystalline Ag/CuO phases with peaks at 38.1° and 44.3° with an average size of 14.51 nm ± 1.00 nm, while SEM showed have flower-like morphology, EDX confirmed Ag, Mg, Si, Ca, C, O, and Cu presence, and FTIR indicated successful capping by Artemisia pallens phytochemicals. The Ag/CuO nanoparticles exhibited high catalytic efficiency under mild aqueous hydrotropic conditions, as reflected by excellent Reaction Mass Efficiency (RME) values (up to 79%) and notably low Process Mass Intensity (PMI) values (as Low as 14 g/g), clearly outperforming traditional methods that use organic solvents and mineral acids. The Turnover Number (TON) and Turnover Frequency (TOF) further emphasize their effectiveness and reusability for green organic synthesis. Additionally, the antibacterial activity of Ag/CuO nanoparticles was evaluated against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa using the agar disk diffusion method. The nanoparticles showed significant inhibition zones ranging from 14 to 20 mm, indicating strong antibacterial efficacy. Furthermore, molecular docking studies of indoline-derived arylglycine derivatives revealed strong binding interactions with the 5GS4 target protein, with Molecule 4f showing the highest affinity (MolDock Score: -114.278, Rerank Score: 90.5965), comparable to the standard drug spironolactone. This work highlights a sustainable approach for synthesizing functional bimetallic nanoparticles with dual applications in green catalysis and antimicrobial activity, contributing to advancements in environmentally friendly nanotechnology and synthetic methodologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信