格劳伯盐相变材料混合太阳能空间冷却系统相变行为及热性能评价

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS
Manzoore Elahi M. Soudagar , Viyat Varun Upadhyay , Ankit Kedia , Ashwin Jacob , Vinayagam Mohanavel , M. Murali , S Sathiyamurthy , Lalitha Gnanasekaran , Manikandan Ayyar
{"title":"格劳伯盐相变材料混合太阳能空间冷却系统相变行为及热性能评价","authors":"Manzoore Elahi M. Soudagar ,&nbsp;Viyat Varun Upadhyay ,&nbsp;Ankit Kedia ,&nbsp;Ashwin Jacob ,&nbsp;Vinayagam Mohanavel ,&nbsp;M. Murali ,&nbsp;S Sathiyamurthy ,&nbsp;Lalitha Gnanasekaran ,&nbsp;Manikandan Ayyar","doi":"10.1016/j.applthermaleng.2025.128564","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm<sup>2</sup>/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128564"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase change behaviour and thermal performance evaluation of hybrid solar space cooling system featuring with Glauber’s salt phase change material\",\"authors\":\"Manzoore Elahi M. Soudagar ,&nbsp;Viyat Varun Upadhyay ,&nbsp;Ankit Kedia ,&nbsp;Ashwin Jacob ,&nbsp;Vinayagam Mohanavel ,&nbsp;M. Murali ,&nbsp;S Sathiyamurthy ,&nbsp;Lalitha Gnanasekaran ,&nbsp;Manikandan Ayyar\",\"doi\":\"10.1016/j.applthermaleng.2025.128564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm<sup>2</sup>/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"281 \",\"pages\":\"Article 128564\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125031564\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125031564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究详细研究了用于空间冷却应用的混合太阳能系统的热性能,实验研究了水(基线)、水/混合纳米流体(石墨烯:氧化铝纳米颗粒的50:50比例)和水/混合纳米流体,分别加入70%、80%和90%的十水硫酸钠(Na2SO4·10H2O - Glauber 's盐)和1wt %硼砂成核剂,以丰富相变行为。将研究混合纳米流体及其与不同百分比的格劳伯盐相变材料(PCM)的联合作用对冷却系统的热学性能、聚变潜热和性能系数(COP)的影响,并与基线结果进行比较。混合纳米流体和提高格劳伯盐的添加比例比水流体具有更好的热性能和更高的COP性能。此外,当混合纳米流体添加量为1%、格劳伯盐添加量为90%、硼砂添加量为1%时,混合太阳能系统具有较高的导热系数(1.38 W/mK)、提高比热容(5147.9 J/kgK)、更好的聚变潜热(187.8 kJ/kg)、COP峰值约为6.2、更高的制冷量(9.0 kW)、降低的热扩散率(0.163 mm2/s)和热循环稳定性(95.8%)等最佳性能,证实了良好的长期运行可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase change behaviour and thermal performance evaluation of hybrid solar space cooling system featuring with Glauber’s salt phase change material
This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na2SO4·10H2O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm2/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信