Manzoore Elahi M. Soudagar , Viyat Varun Upadhyay , Ankit Kedia , Ashwin Jacob , Vinayagam Mohanavel , M. Murali , S Sathiyamurthy , Lalitha Gnanasekaran , Manikandan Ayyar
{"title":"格劳伯盐相变材料混合太阳能空间冷却系统相变行为及热性能评价","authors":"Manzoore Elahi M. Soudagar , Viyat Varun Upadhyay , Ankit Kedia , Ashwin Jacob , Vinayagam Mohanavel , M. Murali , S Sathiyamurthy , Lalitha Gnanasekaran , Manikandan Ayyar","doi":"10.1016/j.applthermaleng.2025.128564","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm<sup>2</sup>/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"281 ","pages":"Article 128564"},"PeriodicalIF":6.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase change behaviour and thermal performance evaluation of hybrid solar space cooling system featuring with Glauber’s salt phase change material\",\"authors\":\"Manzoore Elahi M. Soudagar , Viyat Varun Upadhyay , Ankit Kedia , Ashwin Jacob , Vinayagam Mohanavel , M. Murali , S Sathiyamurthy , Lalitha Gnanasekaran , Manikandan Ayyar\",\"doi\":\"10.1016/j.applthermaleng.2025.128564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na<sub>2</sub>SO<sub>4</sub>·10H<sub>2</sub>O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm<sup>2</sup>/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"281 \",\"pages\":\"Article 128564\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125031564\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125031564","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Phase change behaviour and thermal performance evaluation of hybrid solar space cooling system featuring with Glauber’s salt phase change material
This research presents a detailed investigation of the thermal performance of hybrid solar system for space cooling applications, which is experimentally studied by water (baseline), water/hybrid nanofluid (50:50 ratios of graphene: alumina nanoparticle), and water/hybrid nanofluid with 70, 80, and 90 % of sodium sulfate decahydrate (Na2SO4·10H2O – Glauber’s salt) with 1 wt% borax nucleation agent is used to enriching the phase change behaviour. The influences of hybrid nanofluid and its combined action with varying percentages of Glauber’s salt phase change material (PCM) on the thermal performance, latent heat of fusion, and coefficient of performance (COP) of the cooling system will be studied and compared to baseline results. The significance of hybrid nanofluid and improved percentages of Glauber’s salt offered better thermal performance and higher COP performance than water fluid. Moreover, the hybrid solar system functioned with 1 % of hybrid nanofluid and 90 % Glauber’s salt/1 % borax provided optimum behaviours like higher thermal conductivity (1.38 W/mK), improved specific heat capacity (5147.9 J/kgK), better latent heat of fusion (187.8 kJ/kg), COP peaks at about 6.2, higher cooling capacity (9.0 kW), and reduced thermal diffusivity (0.163 mm2/s) and thermal cycle stability of (95.8 %), confirming excellent long-term operational reliability.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.