基于最优覆盖传感器网络的自主水下航行器全局轨迹生成与跟踪控制

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Duc Cuong Vu , Son Tran , Tung Lam Nguyen, Duc Chinh Hoang
{"title":"基于最优覆盖传感器网络的自主水下航行器全局轨迹生成与跟踪控制","authors":"Duc Cuong Vu ,&nbsp;Son Tran ,&nbsp;Tung Lam Nguyen,&nbsp;Duc Chinh Hoang","doi":"10.1016/j.oceaneng.2025.122902","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive framework for glocal trajectory generation with real-time tracking control for a group of Autonomous Underwater Vehicles (AUVs) equipped with distributed sensors. A two-stage approach is proposed to maximize the underwater area coverage of sensor systems while ensuring network connectivity between AUVs and free collision with terrains and floating obstacles. At the global level, a heuristic algorithm named Global Trajectory to Maximize Coverage (GT-MC) is introduced, which generate trajectory to optimize the final AUVs distribution. After that, the trajectory is further optimized to produce the final set of waypoints for the AUVs group. At the local level, a safety-critical trajectory generation method is developed by using a Model Predictive Control (MPC) scheme for a virtual AUV system with Control Barrier Functions (CBF) as constraints for floating obstacle avoidance. Then, the generated trajectories are tracked by the actual AUVs using a base controller, in this case a classical Sliding Mode Controller (SMC) combined with a thruster force allocation optimizer. The complete framework is validated via simulation studies using an open-source advanced physics tool called MuJoCo. The suggested methodology can facilitate the autonomy, scalability, and safety of sensor-AUVs distribution missions, making it a promising tool for intelligent marine sensing and monitoring.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122902"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glocal trajectory generation and tracking control for autonomous underwater vehicles with optimal coverage sensor networks\",\"authors\":\"Duc Cuong Vu ,&nbsp;Son Tran ,&nbsp;Tung Lam Nguyen,&nbsp;Duc Chinh Hoang\",\"doi\":\"10.1016/j.oceaneng.2025.122902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a comprehensive framework for glocal trajectory generation with real-time tracking control for a group of Autonomous Underwater Vehicles (AUVs) equipped with distributed sensors. A two-stage approach is proposed to maximize the underwater area coverage of sensor systems while ensuring network connectivity between AUVs and free collision with terrains and floating obstacles. At the global level, a heuristic algorithm named Global Trajectory to Maximize Coverage (GT-MC) is introduced, which generate trajectory to optimize the final AUVs distribution. After that, the trajectory is further optimized to produce the final set of waypoints for the AUVs group. At the local level, a safety-critical trajectory generation method is developed by using a Model Predictive Control (MPC) scheme for a virtual AUV system with Control Barrier Functions (CBF) as constraints for floating obstacle avoidance. Then, the generated trajectories are tracked by the actual AUVs using a base controller, in this case a classical Sliding Mode Controller (SMC) combined with a thruster force allocation optimizer. The complete framework is validated via simulation studies using an open-source advanced physics tool called MuJoCo. The suggested methodology can facilitate the autonomy, scalability, and safety of sensor-AUVs distribution missions, making it a promising tool for intelligent marine sensing and monitoring.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"342 \",\"pages\":\"Article 122902\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825025855\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825025855","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

针对一组配备分布式传感器的自主水下航行器,提出了一种具有实时跟踪控制的全局轨迹生成的综合框架。提出了一种两阶段的方法,以最大化传感器系统的水下区域覆盖,同时确保auv之间的网络连接,避免与地形和浮动障碍物的自由碰撞。在全局层面,引入了一种启发式算法全局轨迹最大化覆盖算法(GT-MC),该算法生成轨迹以优化最终的auv分布。之后,进一步优化轨迹,为auv组生成最终的航路点集。在局部层面,针对以控制障碍函数(CBF)为约束条件的虚拟AUV系统,提出了一种基于模型预测控制(MPC)的安全关键轨迹生成方法。然后,实际的auv使用一个基本控制器来跟踪生成的轨迹,在这种情况下,一个经典的滑模控制器(SMC)结合了一个推进器力分配优化器。通过使用开源高级物理工具MuJoCo进行仿真研究,验证了完整的框架。所提出的方法可以促进传感器- auv分配任务的自主性、可扩展性和安全性,使其成为智能海洋传感和监测的有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Glocal trajectory generation and tracking control for autonomous underwater vehicles with optimal coverage sensor networks
This paper presents a comprehensive framework for glocal trajectory generation with real-time tracking control for a group of Autonomous Underwater Vehicles (AUVs) equipped with distributed sensors. A two-stage approach is proposed to maximize the underwater area coverage of sensor systems while ensuring network connectivity between AUVs and free collision with terrains and floating obstacles. At the global level, a heuristic algorithm named Global Trajectory to Maximize Coverage (GT-MC) is introduced, which generate trajectory to optimize the final AUVs distribution. After that, the trajectory is further optimized to produce the final set of waypoints for the AUVs group. At the local level, a safety-critical trajectory generation method is developed by using a Model Predictive Control (MPC) scheme for a virtual AUV system with Control Barrier Functions (CBF) as constraints for floating obstacle avoidance. Then, the generated trajectories are tracked by the actual AUVs using a base controller, in this case a classical Sliding Mode Controller (SMC) combined with a thruster force allocation optimizer. The complete framework is validated via simulation studies using an open-source advanced physics tool called MuJoCo. The suggested methodology can facilitate the autonomy, scalability, and safety of sensor-AUVs distribution missions, making it a promising tool for intelligent marine sensing and monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信