{"title":"具有横向速度和波浪的通气水下发射中的涡腔相互作用","authors":"Housheng Zhang (张后胜) , Yijie Zhang (张毅杰) , Zichao Shao (邵籽超) , Biao Huang (黄彪) , Xin Zhao (赵欣)","doi":"10.1016/j.oceaneng.2025.122967","DOIUrl":null,"url":null,"abstract":"<div><div>Ventilated cavitation is widely used for drag-reduction and stability-enhancement in underwater vehicles. This study presents a numerical investigation of ventilated cavitation during the underwater launch process, accounting for effects of lateral velocity and surface waves. The fluid-structure interaction is resolved using the Boundary Data Immersion Method, and the gas-liquid interface is captured with a Volume of Fluid scheme. Validation against underwater launch experiments and vertical water-tunnel tests confirms the accuracy of predicted cavity evolution and vehicle motion. The shoulder-attached cavity evolves in two distinct stages: pre- and post-ventilation. After ventilation onset, the reduced velocity difference across the cavity suppresses Kelvin–Helmholtz instability, leading to a stabilized interface. Transition from external to internal vortical structures further enhances cavity stability. Under the present lateral velocity conditions, lateral motion breaks flow symmetry: under no lateral velocity, periodic vortex merging induces large-scale shedding and load fluctuations; conversely, lateral motion promotes continuous small-scale shedding on the downstream side, preventing energy accumulation and suppressing large-scale oscillations. These findings reveal the role of vortex-cavity interactions in governing hydrodynamic stability during asymmetric launches.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"342 ","pages":"Article 122967"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex-cavity interactions in ventilated underwater launches with lateral velocity and waves\",\"authors\":\"Housheng Zhang (张后胜) , Yijie Zhang (张毅杰) , Zichao Shao (邵籽超) , Biao Huang (黄彪) , Xin Zhao (赵欣)\",\"doi\":\"10.1016/j.oceaneng.2025.122967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ventilated cavitation is widely used for drag-reduction and stability-enhancement in underwater vehicles. This study presents a numerical investigation of ventilated cavitation during the underwater launch process, accounting for effects of lateral velocity and surface waves. The fluid-structure interaction is resolved using the Boundary Data Immersion Method, and the gas-liquid interface is captured with a Volume of Fluid scheme. Validation against underwater launch experiments and vertical water-tunnel tests confirms the accuracy of predicted cavity evolution and vehicle motion. The shoulder-attached cavity evolves in two distinct stages: pre- and post-ventilation. After ventilation onset, the reduced velocity difference across the cavity suppresses Kelvin–Helmholtz instability, leading to a stabilized interface. Transition from external to internal vortical structures further enhances cavity stability. Under the present lateral velocity conditions, lateral motion breaks flow symmetry: under no lateral velocity, periodic vortex merging induces large-scale shedding and load fluctuations; conversely, lateral motion promotes continuous small-scale shedding on the downstream side, preventing energy accumulation and suppressing large-scale oscillations. These findings reveal the role of vortex-cavity interactions in governing hydrodynamic stability during asymmetric launches.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"342 \",\"pages\":\"Article 122967\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825026502\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825026502","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Vortex-cavity interactions in ventilated underwater launches with lateral velocity and waves
Ventilated cavitation is widely used for drag-reduction and stability-enhancement in underwater vehicles. This study presents a numerical investigation of ventilated cavitation during the underwater launch process, accounting for effects of lateral velocity and surface waves. The fluid-structure interaction is resolved using the Boundary Data Immersion Method, and the gas-liquid interface is captured with a Volume of Fluid scheme. Validation against underwater launch experiments and vertical water-tunnel tests confirms the accuracy of predicted cavity evolution and vehicle motion. The shoulder-attached cavity evolves in two distinct stages: pre- and post-ventilation. After ventilation onset, the reduced velocity difference across the cavity suppresses Kelvin–Helmholtz instability, leading to a stabilized interface. Transition from external to internal vortical structures further enhances cavity stability. Under the present lateral velocity conditions, lateral motion breaks flow symmetry: under no lateral velocity, periodic vortex merging induces large-scale shedding and load fluctuations; conversely, lateral motion promotes continuous small-scale shedding on the downstream side, preventing energy accumulation and suppressing large-scale oscillations. These findings reveal the role of vortex-cavity interactions in governing hydrodynamic stability during asymmetric launches.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.