Juhi Chaudhary , Harmender Gahlawat , Michal Wlodarczyk , Meirav Zehavi
{"title":"弦图子类上不相交路径问题的核","authors":"Juhi Chaudhary , Harmender Gahlawat , Michal Wlodarczyk , Meirav Zehavi","doi":"10.1016/j.jcss.2025.103715","DOIUrl":null,"url":null,"abstract":"<div><div>Given an undirected graph <em>G</em> and a multiset of <em>k</em> terminal pairs <span><math><mi>X</mi></math></span>, the <span>Vertex-Disjoint Paths</span> (<figure><img></figure>) and <span>Edge-Disjoint Paths</span> (<figure><img></figure>) problems ask whether <em>G</em> has <em>k</em> pairwise internally vertex-disjoint paths and <em>k</em> pairwise edge-disjoint paths, respectively, connecting every terminal pair in <span><math><mi>X</mi></math></span>. In this paper, we study the kernelization complexity of <figure><img></figure> and <figure><img></figure> on subclasses of chordal graphs. For <figure><img></figure>, we design a 4<em>k</em> vertex kernel on split graphs and an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For <span>EDP</span>, we first prove that the problem is <span><math><mi>NP</mi></math></span>-complete on complete graphs. Then, we design an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2.75</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on split graphs, and improve it to a <span><math><mn>7</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel on threshold graphs. Lastly, we provide an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on block graphs and a <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. (2015) <span><span>[27]</span></span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103715"},"PeriodicalIF":0.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs\",\"authors\":\"Juhi Chaudhary , Harmender Gahlawat , Michal Wlodarczyk , Meirav Zehavi\",\"doi\":\"10.1016/j.jcss.2025.103715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given an undirected graph <em>G</em> and a multiset of <em>k</em> terminal pairs <span><math><mi>X</mi></math></span>, the <span>Vertex-Disjoint Paths</span> (<figure><img></figure>) and <span>Edge-Disjoint Paths</span> (<figure><img></figure>) problems ask whether <em>G</em> has <em>k</em> pairwise internally vertex-disjoint paths and <em>k</em> pairwise edge-disjoint paths, respectively, connecting every terminal pair in <span><math><mi>X</mi></math></span>. In this paper, we study the kernelization complexity of <figure><img></figure> and <figure><img></figure> on subclasses of chordal graphs. For <figure><img></figure>, we design a 4<em>k</em> vertex kernel on split graphs and an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For <span>EDP</span>, we first prove that the problem is <span><math><mi>NP</mi></math></span>-complete on complete graphs. Then, we design an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2.75</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on split graphs, and improve it to a <span><math><mn>7</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel on threshold graphs. Lastly, we provide an <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> vertex kernel for <figure><img></figure> on block graphs and a <span><math><mn>2</mn><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. (2015) <span><span>[27]</span></span>.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"156 \",\"pages\":\"Article 103715\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025000972\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025000972","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Kernels for the Disjoint Paths Problem on Subclasses of Chordal Graphs
Given an undirected graph G and a multiset of k terminal pairs , the Vertex-Disjoint Paths () and Edge-Disjoint Paths () problems ask whether G has k pairwise internally vertex-disjoint paths and k pairwise edge-disjoint paths, respectively, connecting every terminal pair in . In this paper, we study the kernelization complexity of and on subclasses of chordal graphs. For , we design a 4k vertex kernel on split graphs and an vertex kernel on well-partitioned chordal graphs. We also show that the problem becomes polynomial-time solvable on threshold graphs. For EDP, we first prove that the problem is -complete on complete graphs. Then, we design an vertex kernel for on split graphs, and improve it to a vertex kernel on threshold graphs. Lastly, we provide an vertex kernel for on block graphs and a vertex kernel for clique paths. Our contributions improve upon several results in the literature, as well as resolve an open question by Heggernes et al. (2015) [27].
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.