树宽度参数化问题的近似图灵核化

IF 0.9 3区 计算机科学 Q1 BUSINESS, FINANCE
Eva-Maria C. Hols , Stefan Kratsch, Astrid Pieterse
{"title":"树宽度参数化问题的近似图灵核化","authors":"Eva-Maria C. Hols ,&nbsp;Stefan Kratsch,&nbsp;Astrid Pieterse","doi":"10.1016/j.jcss.2025.103720","DOIUrl":null,"url":null,"abstract":"<div><div>We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) <span><span>[19]</span></span>, to approximate Turing kernelization. An <em>α</em>-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs <em>c</em>-approximate solutions in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time, computes an <span><math><mi>α</mi><mo>⋅</mo><mi>c</mi></math></span>-approximate solution to the considered problem, using calls to the oracle of size at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some function <em>f</em> that only depends on the parameter. Using this definition, we show that <span>Independent Set</span> parameterized by treewidth <em>ℓ</em> has a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelization with <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></math></span> vertices, answering an open question posed by Lokshtanov et al. (2017) <span><span>[19]</span></span>. Furthermore, we give <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations for the following graph problems parameterized by treewidth: <span>Vertex Cover</span>, <span>Edge Clique Cover</span>, <span>Edge-Disjoint Triangle Packing</span>, and <span>Connected Vertex Cover</span>. We generalize the result for <span>Independent Set</span> and <span>Vertex Cover</span> by showing that all graph problems that we will call <em>friendly</em> admit <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for <span>Vertex-Disjoint</span> <em>H</em><span>-packing</span> for connected graphs <em>H</em>, <span>Clique Cover</span>, <span>Feedback Vertex Set</span>, and <span>Edge Dominating Set</span>.</div></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"156 ","pages":"Article 103720"},"PeriodicalIF":0.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Turing kernelization for problems parameterized by treewidth\",\"authors\":\"Eva-Maria C. Hols ,&nbsp;Stefan Kratsch,&nbsp;Astrid Pieterse\",\"doi\":\"10.1016/j.jcss.2025.103720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) <span><span>[19]</span></span>, to approximate Turing kernelization. An <em>α</em>-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs <em>c</em>-approximate solutions in <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> time, computes an <span><math><mi>α</mi><mo>⋅</mo><mi>c</mi></math></span>-approximate solution to the considered problem, using calls to the oracle of size at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> for some function <em>f</em> that only depends on the parameter. Using this definition, we show that <span>Independent Set</span> parameterized by treewidth <em>ℓ</em> has a <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelization with <span><math><mi>O</mi><mo>(</mo><mfrac><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>)</mo></math></span> vertices, answering an open question posed by Lokshtanov et al. (2017) <span><span>[19]</span></span>. Furthermore, we give <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations for the following graph problems parameterized by treewidth: <span>Vertex Cover</span>, <span>Edge Clique Cover</span>, <span>Edge-Disjoint Triangle Packing</span>, and <span>Connected Vertex Cover</span>. We generalize the result for <span>Independent Set</span> and <span>Vertex Cover</span> by showing that all graph problems that we will call <em>friendly</em> admit <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for <span>Vertex-Disjoint</span> <em>H</em><span>-packing</span> for connected graphs <em>H</em>, <span>Clique Cover</span>, <span>Feedback Vertex Set</span>, and <span>Edge Dominating Set</span>.</div></div>\",\"PeriodicalId\":50224,\"journal\":{\"name\":\"Journal of Computer and System Sciences\",\"volume\":\"156 \",\"pages\":\"Article 103720\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer and System Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022000025001023\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000025001023","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们扩展了Lokshtanov等人(2017)[19]引入的有损核化概念,以近似图灵核化。参数化优化问题的α-近似图灵核化是一种多项式时间算法,当给定一个在O(1)时间内输出c个近似解的神谕时,对只依赖于参数的函数f调用最大为f(k)的神谕,计算所考虑问题的α⋅c-近似解。利用这一定义,我们证明了由树宽(treewidth)参数化的独立集具有O(l2ε)个顶点的(1+ε)-近似图灵核化,回答了Lokshtanov等人(2017)[19]提出的一个开放问题。进一步,我们给出了以下由树宽度参数化的图问题的(1+ε)-近似图灵核化:顶点覆盖、边团覆盖、边不相交三角形填充和连通顶点覆盖。我们推广了独立集和顶点覆盖的结果,表明当用树宽参数化时,所有我们称之为友好的图问题都承认(1+ε)-多项式大小的近似图灵核化。我们用这个方法建立了连通图H、团盖、反馈顶点集和边支配集的顶点不相交H填充的近似图灵核化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate Turing kernelization for problems parameterized by treewidth
We extend the notion of lossy kernelization, introduced by Lokshtanov et al. (2017) [19], to approximate Turing kernelization. An α-approximate Turing kernelization for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in O(1) time, computes an αc-approximate solution to the considered problem, using calls to the oracle of size at most f(k) for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth has a (1+ε)-approximate Turing kernelization with O(2ε) vertices, answering an open question posed by Lokshtanov et al. (2017) [19]. Furthermore, we give (1+ε)-approximate Turing kernelizations for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing, and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover by showing that all graph problems that we will call friendly admit (1+ε)-approximate Turing kernelizations of polynomial size when parameterized by treewidth. We use this to establish approximate Turing kernelizations for Vertex-Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set, and Edge Dominating Set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信