水基纳米流体在重力热管中的流动和热性能研究

IF 5.4 3区 工程技术 Q2 ENERGY & FUELS
Yuguo Gao , Tianle Niu , Yilin Ning , Kim L. Liaw , Arun S. Mujumdar , Agus P. Sasmito
{"title":"水基纳米流体在重力热管中的流动和热性能研究","authors":"Yuguo Gao ,&nbsp;Tianle Niu ,&nbsp;Yilin Ning ,&nbsp;Kim L. Liaw ,&nbsp;Arun S. Mujumdar ,&nbsp;Agus P. Sasmito","doi":"10.1016/j.tsep.2025.104131","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a numerical investigation into the flow and thermal performance of gravity heat pipes, employing the Volume of Fluid (VOF) multiphase flow model in conjunction with a User-Defined Function (UDF) to simulate evaporation and condensation processes. The results demonstrate that the graphene oxide nanofluid heat pipe achieves a 33 % faster startup, forming a stable condensate film in 2 s compared to 3 s for pure water, and exhibits superior thermal performance. When the heating power increases from 10 W to 40 W, the total thermal resistance decreases by<!--> <!-->approximately 42 %<!--> <!-->for the pure water heat pipe, but only by<!--> <!-->5.2 %<!--> <!-->for the graphene oxide (GO) nanofluid pipe, indicating its more stable performance across a power range. At 40 W, the GO nanofluid (0.2 wt%)<!--> <!-->enhances the equivalent convective heat transfer coefficient by 5 %<!--> <!-->and reduces the total thermal resistance by<!--> <!-->up to 5.2 %<!--> <!-->compared to pure water. Most notably, at the optimal power of 50 W, the GO nanofluid achieves a<!--> <!-->maximum reduction in thermal resistance of 7.8 %<!--> <!-->and an<!--> <!-->enhancement in the convective heat transfer coefficient of 4.5 %, while maintaining a more stable flow field, thereby extending the operational limit beyond 50 W.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"67 ","pages":"Article 104131"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of flow and thermal performance of water-based nanofluid in gravity heat pipe\",\"authors\":\"Yuguo Gao ,&nbsp;Tianle Niu ,&nbsp;Yilin Ning ,&nbsp;Kim L. Liaw ,&nbsp;Arun S. Mujumdar ,&nbsp;Agus P. Sasmito\",\"doi\":\"10.1016/j.tsep.2025.104131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a numerical investigation into the flow and thermal performance of gravity heat pipes, employing the Volume of Fluid (VOF) multiphase flow model in conjunction with a User-Defined Function (UDF) to simulate evaporation and condensation processes. The results demonstrate that the graphene oxide nanofluid heat pipe achieves a 33 % faster startup, forming a stable condensate film in 2 s compared to 3 s for pure water, and exhibits superior thermal performance. When the heating power increases from 10 W to 40 W, the total thermal resistance decreases by<!--> <!-->approximately 42 %<!--> <!-->for the pure water heat pipe, but only by<!--> <!-->5.2 %<!--> <!-->for the graphene oxide (GO) nanofluid pipe, indicating its more stable performance across a power range. At 40 W, the GO nanofluid (0.2 wt%)<!--> <!-->enhances the equivalent convective heat transfer coefficient by 5 %<!--> <!-->and reduces the total thermal resistance by<!--> <!-->up to 5.2 %<!--> <!-->compared to pure water. Most notably, at the optimal power of 50 W, the GO nanofluid achieves a<!--> <!-->maximum reduction in thermal resistance of 7.8 %<!--> <!-->and an<!--> <!-->enhancement in the convective heat transfer coefficient of 4.5 %, while maintaining a more stable flow field, thereby extending the operational limit beyond 50 W.</div></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":\"67 \",\"pages\":\"Article 104131\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451904925009229\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925009229","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用流体体积(VOF)多相流模型结合用户定义函数(UDF)对重力热管的流动和热性能进行了数值研究,以模拟蒸发和冷凝过程。结果表明,氧化石墨烯纳米流体热管的启动速度比纯水的启动速度快33%,在2秒内形成稳定的冷凝膜,并具有优越的热性能。当加热功率从10 W增加到40 W时,纯水热管的总热阻下降了约42%,而氧化石墨烯(GO)纳米流体管的总热阻仅下降了5.2%,表明其在整个功率范围内的性能更稳定。在40 W时,与纯水相比,氧化石墨烯纳米流体(0.2 wt%)的等效对流换热系数提高了5%,总热阻降低了5.2%。最值得注意的是,在最佳功率为50 W时,氧化石墨烯纳米流体的热阻最大降低了7.8%,对流换热系数提高了4.5%,同时保持了更稳定的流场,从而将工作极限扩展到50 W以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of flow and thermal performance of water-based nanofluid in gravity heat pipe
This study presents a numerical investigation into the flow and thermal performance of gravity heat pipes, employing the Volume of Fluid (VOF) multiphase flow model in conjunction with a User-Defined Function (UDF) to simulate evaporation and condensation processes. The results demonstrate that the graphene oxide nanofluid heat pipe achieves a 33 % faster startup, forming a stable condensate film in 2 s compared to 3 s for pure water, and exhibits superior thermal performance. When the heating power increases from 10 W to 40 W, the total thermal resistance decreases by approximately 42 % for the pure water heat pipe, but only by 5.2 % for the graphene oxide (GO) nanofluid pipe, indicating its more stable performance across a power range. At 40 W, the GO nanofluid (0.2 wt%) enhances the equivalent convective heat transfer coefficient by 5 % and reduces the total thermal resistance by up to 5.2 % compared to pure water. Most notably, at the optimal power of 50 W, the GO nanofluid achieves a maximum reduction in thermal resistance of 7.8 % and an enhancement in the convective heat transfer coefficient of 4.5 %, while maintaining a more stable flow field, thereby extending the operational limit beyond 50 W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信