利用混合TRANSGAN深度学习方法推进城市扩张建模

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Farasath Hasan, Xintao Liu
{"title":"利用混合TRANSGAN深度学习方法推进城市扩张建模","authors":"Farasath Hasan,&nbsp;Xintao Liu","doi":"10.1016/j.envsoft.2025.106693","DOIUrl":null,"url":null,"abstract":"<div><div>Urban expansion modeling is pivotal for sustainable urban planning, yet conventional approaches often fail to capture intricate spatial and temporal dynamics. In this study, we present TRANSGAN, the first framework combining Transformer networks and Generative Adversarial Networks (GANs) for urban expansion simulation. By harnessing the spatial learning strengths of Transformers alongside the generative capabilities of GANs, TRANSGAN significantly outperforms traditional models, as evidenced by enhanced predictive accuracy and spatial consistency. Trained on historical land use data in Hong Kong and incorporating key drivers, such as proximity to CBDs, road networks, and elevation, the model delivers highly realistic urban expansion forecasts for 2035 and 2045. Comparative analyses with Transformer, GAN, U-Net, and Random Forest models demonstrate that TRANSGAN achieves the highest F1 Score (0.9496), Precision (0.9396), FOM (0.8889), and Recall (0.9428). This robust, interpretable, and scalable approach not only advances urban expansion modeling but also provides critical insights for urban planners and policymakers.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"194 ","pages":"Article 106693"},"PeriodicalIF":4.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing urban expansion modeling with a hybrid TRANSGAN deep learning approach\",\"authors\":\"Farasath Hasan,&nbsp;Xintao Liu\",\"doi\":\"10.1016/j.envsoft.2025.106693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Urban expansion modeling is pivotal for sustainable urban planning, yet conventional approaches often fail to capture intricate spatial and temporal dynamics. In this study, we present TRANSGAN, the first framework combining Transformer networks and Generative Adversarial Networks (GANs) for urban expansion simulation. By harnessing the spatial learning strengths of Transformers alongside the generative capabilities of GANs, TRANSGAN significantly outperforms traditional models, as evidenced by enhanced predictive accuracy and spatial consistency. Trained on historical land use data in Hong Kong and incorporating key drivers, such as proximity to CBDs, road networks, and elevation, the model delivers highly realistic urban expansion forecasts for 2035 and 2045. Comparative analyses with Transformer, GAN, U-Net, and Random Forest models demonstrate that TRANSGAN achieves the highest F1 Score (0.9496), Precision (0.9396), FOM (0.8889), and Recall (0.9428). This robust, interpretable, and scalable approach not only advances urban expansion modeling but also provides critical insights for urban planners and policymakers.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"194 \",\"pages\":\"Article 106693\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003779\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003779","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

城市扩张建模对于可持续城市规划至关重要,但传统方法往往无法捕捉复杂的时空动态。在本研究中,我们提出了TRANSGAN,这是第一个将变压器网络和生成对抗网络(gan)结合起来用于城市扩展模拟的框架。通过利用变形金刚的空间学习优势和gan的生成能力,TRANSGAN显著优于传统模型,这可以通过提高预测准确性和空间一致性来证明。该模型基于香港的历史土地使用数据,并结合关键驱动因素,如靠近cbd、道路网络和海拔高度,提供了2035年和2045年高度现实的城市扩张预测。与Transformer、GAN、U-Net和Random Forest模型的比较分析表明,TRANSGAN模型达到了最高的F1得分(0.9496)、精度(0.9396)、FOM(0.8889)和召回率(0.9428)。这种强大的、可解释的、可扩展的方法不仅推进了城市扩张模型,而且为城市规划者和政策制定者提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing urban expansion modeling with a hybrid TRANSGAN deep learning approach
Urban expansion modeling is pivotal for sustainable urban planning, yet conventional approaches often fail to capture intricate spatial and temporal dynamics. In this study, we present TRANSGAN, the first framework combining Transformer networks and Generative Adversarial Networks (GANs) for urban expansion simulation. By harnessing the spatial learning strengths of Transformers alongside the generative capabilities of GANs, TRANSGAN significantly outperforms traditional models, as evidenced by enhanced predictive accuracy and spatial consistency. Trained on historical land use data in Hong Kong and incorporating key drivers, such as proximity to CBDs, road networks, and elevation, the model delivers highly realistic urban expansion forecasts for 2035 and 2045. Comparative analyses with Transformer, GAN, U-Net, and Random Forest models demonstrate that TRANSGAN achieves the highest F1 Score (0.9496), Precision (0.9396), FOM (0.8889), and Recall (0.9428). This robust, interpretable, and scalable approach not only advances urban expansion modeling but also provides critical insights for urban planners and policymakers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信