{"title":"图中不相交环的一个新结果","authors":"Jie Zhang , Jin Yan","doi":"10.1016/j.disc.2025.114823","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a positive integer. For a graph <em>G</em>, we define ‘<span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>’ the minimum value of max<span><math><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>}</mo></math></span> for any pair of nonadjacent vertices <em>x</em> and <em>y</em>. In 1963, Corrádi and Hajnal proved a classical result: every graph <em>G</em> of order at least 3<em>k</em> with minimum degree at least 2<em>k</em> contains <em>k</em> disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. In this paper, we characterize all graphs on at least <span><math><mn>4</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices with <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> without <em>k</em> disjoint cycles.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114823"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new result on disjoint cycles in graphs\",\"authors\":\"Jie Zhang , Jin Yan\",\"doi\":\"10.1016/j.disc.2025.114823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a positive integer. For a graph <em>G</em>, we define ‘<span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>’ the minimum value of max<span><math><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>}</mo></math></span> for any pair of nonadjacent vertices <em>x</em> and <em>y</em>. In 1963, Corrádi and Hajnal proved a classical result: every graph <em>G</em> of order at least 3<em>k</em> with minimum degree at least 2<em>k</em> contains <em>k</em> disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. In this paper, we characterize all graphs on at least <span><math><mn>4</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices with <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> without <em>k</em> disjoint cycles.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114823\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004315\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004315","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let k be a positive integer. For a graph G, we define ‘’ the minimum value of max for any pair of nonadjacent vertices x and y. In 1963, Corrádi and Hajnal proved a classical result: every graph G of order at least 3k with minimum degree at least 2k contains k disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of . In this paper, we characterize all graphs on at least vertices with without k disjoint cycles.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.