图中不相交环的一个新结果

IF 0.7 3区 数学 Q2 MATHEMATICS
Jie Zhang , Jin Yan
{"title":"图中不相交环的一个新结果","authors":"Jie Zhang ,&nbsp;Jin Yan","doi":"10.1016/j.disc.2025.114823","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a positive integer. For a graph <em>G</em>, we define ‘<span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>’ the minimum value of max<span><math><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>}</mo></math></span> for any pair of nonadjacent vertices <em>x</em> and <em>y</em>. In 1963, Corrádi and Hajnal proved a classical result: every graph <em>G</em> of order at least 3<em>k</em> with minimum degree at least 2<em>k</em> contains <em>k</em> disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. In this paper, we characterize all graphs on at least <span><math><mn>4</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices with <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> without <em>k</em> disjoint cycles.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 3","pages":"Article 114823"},"PeriodicalIF":0.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new result on disjoint cycles in graphs\",\"authors\":\"Jie Zhang ,&nbsp;Jin Yan\",\"doi\":\"10.1016/j.disc.2025.114823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a positive integer. For a graph <em>G</em>, we define ‘<span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>’ the minimum value of max<span><math><mo>{</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>d</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>}</mo></math></span> for any pair of nonadjacent vertices <em>x</em> and <em>y</em>. In 1963, Corrádi and Hajnal proved a classical result: every graph <em>G</em> of order at least 3<em>k</em> with minimum degree at least 2<em>k</em> contains <em>k</em> disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of <span><math><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. In this paper, we characterize all graphs on at least <span><math><mn>4</mn><mi>k</mi><mo>+</mo><mn>2</mn></math></span> vertices with <span><math><msubsup><mrow><mi>σ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></math></span> without <em>k</em> disjoint cycles.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"349 3\",\"pages\":\"Article 114823\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25004315\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25004315","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设k为正整数。对于图G,我们定义了σ12(G) '对于任意不相邻顶点x和y的对max{d(x),d(y)}的最小值。1963年Corrádi和Hajnal证明了一个经典结果:最小度至少为2k的至少3k阶图G包含k个不相交环。Kierstead, Kostochka和Yeager通过考虑2k−1的最小度改进了Corrádi-Hajnal定理。在本文中,我们刻画了所有在至少4k+2个顶点上且σ12(G)≥2k−1且没有k个不相交环的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new result on disjoint cycles in graphs
Let k be a positive integer. For a graph G, we define ‘σ12(G)’ the minimum value of max{d(x),d(y)} for any pair of nonadjacent vertices x and y. In 1963, Corrádi and Hajnal proved a classical result: every graph G of order at least 3k with minimum degree at least 2k contains k disjoint cycles. Kierstead, Kostochka and Yeager refined Corrádi-Hajnal Theorem by considering the minimum degree of 2k1. In this paper, we characterize all graphs on at least 4k+2 vertices with σ12(G)2k1 without k disjoint cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信