渤中坳陷第三系裂缝定量预测及其在漏失预测中的应用

IF 3.7 2区 工程技术 Q3 ENERGY & FUELS
He Du , Jianwei Feng , Shouyu Xu , Junxiao Qu , Chen Li , Xiang Gao , Huilin Xing
{"title":"渤中坳陷第三系裂缝定量预测及其在漏失预测中的应用","authors":"He Du ,&nbsp;Jianwei Feng ,&nbsp;Shouyu Xu ,&nbsp;Junxiao Qu ,&nbsp;Chen Li ,&nbsp;Xiang Gao ,&nbsp;Huilin Xing","doi":"10.1016/j.gete.2025.100749","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the exploration and development of oil and gas reservoirs in the Bohai Sea have gained significant attention. However, the high cost of offshore drilling and the occurrence of frequent lost circulation accidents have resulted in substantial economic losses. Therefore, it is crucial to effectively predict and assess the risk of lost circulation in the Bozhong Depression. This study focuses on the analysis of lost circulation characteristics, identifying fracture characteristics as the most influential factors. Geomechanical methods were employed to characterize fracture parameters in the study area, enabling the prediction of lost circulation. A three-dimensional heterogeneous rock mechanical parameter model, incorporating lithology and faults, was constructed based on rock mechanics experiments, logging, and seismic data. Structural evolution analysis and acoustic emission experiments were conducted to determine the main period of fracture development. The Ansys software's finite element simulation platform facilitated the simulation of the paleo-stress field in the study area. By applying the principles of geomechanics, a calculation formula for fracture parameters was derived, and the spatial distribution of fracture parameters in the study area was quantitatively characterized using the results of the paleo-stress field simulation. Taking into account the lost circulation points of drilled wells, fracture parameters, current stress field, lithology, and other factors contributing to lost circulation, a leakage risk threshold area for fracture parameters was proposed. The predictions of lost circulation were validated using verification wells, demonstrating good agreement with actual drilling conditions. This approach provides valuable insights for mitigating lost circulation during drilling, reducing drilling cycles, and minimizing economic losses.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"44 ","pages":"Article 100749"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative prediction of tertiary formation fractures and its application in lost circulation prediction in the Bozhong Depression\",\"authors\":\"He Du ,&nbsp;Jianwei Feng ,&nbsp;Shouyu Xu ,&nbsp;Junxiao Qu ,&nbsp;Chen Li ,&nbsp;Xiang Gao ,&nbsp;Huilin Xing\",\"doi\":\"10.1016/j.gete.2025.100749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the exploration and development of oil and gas reservoirs in the Bohai Sea have gained significant attention. However, the high cost of offshore drilling and the occurrence of frequent lost circulation accidents have resulted in substantial economic losses. Therefore, it is crucial to effectively predict and assess the risk of lost circulation in the Bozhong Depression. This study focuses on the analysis of lost circulation characteristics, identifying fracture characteristics as the most influential factors. Geomechanical methods were employed to characterize fracture parameters in the study area, enabling the prediction of lost circulation. A three-dimensional heterogeneous rock mechanical parameter model, incorporating lithology and faults, was constructed based on rock mechanics experiments, logging, and seismic data. Structural evolution analysis and acoustic emission experiments were conducted to determine the main period of fracture development. The Ansys software's finite element simulation platform facilitated the simulation of the paleo-stress field in the study area. By applying the principles of geomechanics, a calculation formula for fracture parameters was derived, and the spatial distribution of fracture parameters in the study area was quantitatively characterized using the results of the paleo-stress field simulation. Taking into account the lost circulation points of drilled wells, fracture parameters, current stress field, lithology, and other factors contributing to lost circulation, a leakage risk threshold area for fracture parameters was proposed. The predictions of lost circulation were validated using verification wells, demonstrating good agreement with actual drilling conditions. This approach provides valuable insights for mitigating lost circulation during drilling, reducing drilling cycles, and minimizing economic losses.</div></div>\",\"PeriodicalId\":56008,\"journal\":{\"name\":\"Geomechanics for Energy and the Environment\",\"volume\":\"44 \",\"pages\":\"Article 100749\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics for Energy and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352380825001145\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825001145","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,渤海地区的油气勘探与开发备受关注。然而,海上钻井成本高,漏失事故频发,造成了巨大的经济损失。因此,有效地预测和评估渤中坳陷的漏失风险至关重要。本研究重点分析了漏失特征,认为裂缝特征是影响漏失最主要的因素。利用地质力学方法对研究区域的裂缝参数进行表征,从而预测井漏情况。基于岩石力学实验、测井和地震资料,建立了考虑岩性和断层的三维非均质岩石力学参数模型。通过构造演化分析和声发射实验确定了裂缝发育的主要时期。利用Ansys软件的有限元仿真平台,实现了研究区古应力场的模拟。应用地质力学原理,推导了裂缝参数计算公式,并利用古应力场模拟结果定量表征了研究区裂缝参数的空间分布。综合考虑井漏点、裂缝参数、当前应力场、岩性等导致漏失的因素,提出了裂缝参数的泄漏风险阈值区域。利用验证井对漏失预测进行了验证,与实际钻井条件吻合良好。该方法为减少钻井过程中的漏失、缩短钻井周期、最大限度地减少经济损失提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative prediction of tertiary formation fractures and its application in lost circulation prediction in the Bozhong Depression
In recent years, the exploration and development of oil and gas reservoirs in the Bohai Sea have gained significant attention. However, the high cost of offshore drilling and the occurrence of frequent lost circulation accidents have resulted in substantial economic losses. Therefore, it is crucial to effectively predict and assess the risk of lost circulation in the Bozhong Depression. This study focuses on the analysis of lost circulation characteristics, identifying fracture characteristics as the most influential factors. Geomechanical methods were employed to characterize fracture parameters in the study area, enabling the prediction of lost circulation. A three-dimensional heterogeneous rock mechanical parameter model, incorporating lithology and faults, was constructed based on rock mechanics experiments, logging, and seismic data. Structural evolution analysis and acoustic emission experiments were conducted to determine the main period of fracture development. The Ansys software's finite element simulation platform facilitated the simulation of the paleo-stress field in the study area. By applying the principles of geomechanics, a calculation formula for fracture parameters was derived, and the spatial distribution of fracture parameters in the study area was quantitatively characterized using the results of the paleo-stress field simulation. Taking into account the lost circulation points of drilled wells, fracture parameters, current stress field, lithology, and other factors contributing to lost circulation, a leakage risk threshold area for fracture parameters was proposed. The predictions of lost circulation were validated using verification wells, demonstrating good agreement with actual drilling conditions. This approach provides valuable insights for mitigating lost circulation during drilling, reducing drilling cycles, and minimizing economic losses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics for Energy and the Environment
Geomechanics for Energy and the Environment Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
11.80%
发文量
87
期刊介绍: The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources. The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信