利用RSM-FEM耦合优化分段电极自由落体分离器的电场均匀性

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Abdelkader Nadjem , Karim Rouagdia
{"title":"利用RSM-FEM耦合优化分段电极自由落体分离器的电场均匀性","authors":"Abdelkader Nadjem ,&nbsp;Karim Rouagdia","doi":"10.1016/j.elstat.2025.104191","DOIUrl":null,"url":null,"abstract":"<div><div>Electrostatic separation enables the efficient sorting of mixed granular insulating materials by applying controlled electrical and mechanical forces. Although particle separation requires a strong electric field (E-field), a uniform field distribution is critical to achieving consistent particle deflection and high separation efficiency. This study aimed to analyze the E-field non-uniformity (NUF) in free-fall electrostatic separator design incorporating segmented electrodes and inter-electrode side openings to mitigate particle rebound. Numerical simulations were conducted to optimize critical parameters—number of electrode pairs, inclination angle, and segmented length ratio—using a coupled computational approach: finite element analysis (FEM) in COMSOL Multiphysics for field modeling, integrated with response surface methodology (RSM) <em>via</em> central composite design (CCD) in JMP statistical software for parametric optimization. Key performance metrics included E-field NUF and the total distance between same-polarity electrodes. Quadratic regression modeling identified the optimal configuration to be eight electrode pairs with a segment length of 4.16 cm and an inclination angle of 16.88°, achieving 86 % desirability. Simulation results showed a strong correlation with model predictions (R<sup>2</sup> &gt; 0.99). Statistical analysis revealed that the number of electrode pairs was the most influential factor affecting E-field NUF, contributing to 49.75 % of the observed variance. Similarly, the segmented electrode length ratio had the strongest impact on inter-electrode distance, accounting for 65.91 % of the response variation. Compared to conventional configurations, the proposed design reduces E-field NUF by 44 %, demonstrating its potential for enhanced electrostatic separation performance.</div></div>","PeriodicalId":54842,"journal":{"name":"Journal of Electrostatics","volume":"138 ","pages":"Article 104191"},"PeriodicalIF":2.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing electric field uniformity of a segmented-electrode free-fall separator using RSM-FEM coupling\",\"authors\":\"Abdelkader Nadjem ,&nbsp;Karim Rouagdia\",\"doi\":\"10.1016/j.elstat.2025.104191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrostatic separation enables the efficient sorting of mixed granular insulating materials by applying controlled electrical and mechanical forces. Although particle separation requires a strong electric field (E-field), a uniform field distribution is critical to achieving consistent particle deflection and high separation efficiency. This study aimed to analyze the E-field non-uniformity (NUF) in free-fall electrostatic separator design incorporating segmented electrodes and inter-electrode side openings to mitigate particle rebound. Numerical simulations were conducted to optimize critical parameters—number of electrode pairs, inclination angle, and segmented length ratio—using a coupled computational approach: finite element analysis (FEM) in COMSOL Multiphysics for field modeling, integrated with response surface methodology (RSM) <em>via</em> central composite design (CCD) in JMP statistical software for parametric optimization. Key performance metrics included E-field NUF and the total distance between same-polarity electrodes. Quadratic regression modeling identified the optimal configuration to be eight electrode pairs with a segment length of 4.16 cm and an inclination angle of 16.88°, achieving 86 % desirability. Simulation results showed a strong correlation with model predictions (R<sup>2</sup> &gt; 0.99). Statistical analysis revealed that the number of electrode pairs was the most influential factor affecting E-field NUF, contributing to 49.75 % of the observed variance. Similarly, the segmented electrode length ratio had the strongest impact on inter-electrode distance, accounting for 65.91 % of the response variation. Compared to conventional configurations, the proposed design reduces E-field NUF by 44 %, demonstrating its potential for enhanced electrostatic separation performance.</div></div>\",\"PeriodicalId\":54842,\"journal\":{\"name\":\"Journal of Electrostatics\",\"volume\":\"138 \",\"pages\":\"Article 104191\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrostatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304388625001639\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrostatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304388625001639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

静电分离通过施加受控的电和机械力,使混合颗粒绝缘材料的有效分选成为可能。虽然颗粒分离需要强大的电场(e场),但均匀的电场分布对于实现一致的颗粒偏转和高分离效率至关重要。本研究旨在分析采用分段电极和电极间侧开口的自由落体静电分离器设计中的电场非均匀性(NUF),以减轻粒子反弹。采用耦合计算方法进行了数值模拟,以优化关键参数-电极对数,倾角和分段长度比-使用COMSOL Multiphysics中的有限元分析(FEM)进行现场建模,并通过JMP统计软件中的中心复合设计(CCD)集成响应面方法(RSM)进行参数优化。关键性能指标包括E-field NUF和同极性电极之间的总距离。二次回归模型确定了最优配置为8对电极,电极段长度为4.16 cm,电极倾角为16.88°,理想度达到86%。模拟结果显示与模型预测有很强的相关性(R2 > 0.99)。统计分析表明,电极对数是影响电场NUF的最主要因素,占观察方差的49.75%。同样,分段电极长度比对电极间距离的影响最大,占响应变化的65.91%。与传统配置相比,所提出的设计将E-field NUF降低了44%,表明其具有增强静电分离性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing electric field uniformity of a segmented-electrode free-fall separator using RSM-FEM coupling

Optimizing electric field uniformity of a segmented-electrode free-fall separator using RSM-FEM coupling
Electrostatic separation enables the efficient sorting of mixed granular insulating materials by applying controlled electrical and mechanical forces. Although particle separation requires a strong electric field (E-field), a uniform field distribution is critical to achieving consistent particle deflection and high separation efficiency. This study aimed to analyze the E-field non-uniformity (NUF) in free-fall electrostatic separator design incorporating segmented electrodes and inter-electrode side openings to mitigate particle rebound. Numerical simulations were conducted to optimize critical parameters—number of electrode pairs, inclination angle, and segmented length ratio—using a coupled computational approach: finite element analysis (FEM) in COMSOL Multiphysics for field modeling, integrated with response surface methodology (RSM) via central composite design (CCD) in JMP statistical software for parametric optimization. Key performance metrics included E-field NUF and the total distance between same-polarity electrodes. Quadratic regression modeling identified the optimal configuration to be eight electrode pairs with a segment length of 4.16 cm and an inclination angle of 16.88°, achieving 86 % desirability. Simulation results showed a strong correlation with model predictions (R2 > 0.99). Statistical analysis revealed that the number of electrode pairs was the most influential factor affecting E-field NUF, contributing to 49.75 % of the observed variance. Similarly, the segmented electrode length ratio had the strongest impact on inter-electrode distance, accounting for 65.91 % of the response variation. Compared to conventional configurations, the proposed design reduces E-field NUF by 44 %, demonstrating its potential for enhanced electrostatic separation performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrostatics
Journal of Electrostatics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
11.10%
发文量
81
审稿时长
49 days
期刊介绍: The Journal of Electrostatics is the leading forum for publishing research findings that advance knowledge in the field of electrostatics. We invite submissions in the following areas: Electrostatic charge separation processes. Electrostatic manipulation of particles, droplets, and biological cells. Electrostatically driven or controlled fluid flow. Electrostatics in the gas phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信