Muhammad Faisal Anwar, , , Muhammad Afzal, , , Muhammad Khalid, , , Muhammad Imran Asghar, , , Liangdong Fan, , , Sining Yun, , , Touseef Ahmad, , , Li Sun, , , Peter D Lund*, , and , Bin Zhu*,
{"title":"电化学质子注入和质子-电子溢出在氧化物中的质子传导","authors":"Muhammad Faisal Anwar, , , Muhammad Afzal, , , Muhammad Khalid, , , Muhammad Imran Asghar, , , Liangdong Fan, , , Sining Yun, , , Touseef Ahmad, , , Li Sun, , , Peter D Lund*, , and , Bin Zhu*, ","doi":"10.1021/acsmaterialslett.5c00855","DOIUrl":null,"url":null,"abstract":"<p >Proton conduction in oxides (PCOs) is traditionally explained by hydration-based equilibrium models, which assume sufficient proton uptake from moisture or hydrogen. However, this static hydration-based framework fails under real operating conditions of proton ceramic fuel cells, where proton injection and field-driven dynamic processes dominate. This disconnection has led to an underestimation of proton concentration and mobility, also limiting the development of advanced PCOs. Here, we establish a distinct fundamental and experimental framework based on electrochemical proton injection (EPI) and proton–electron spillover, which are dynamic processes enabling an enhanced proton transport both in bulk and across grain boundary domains. Supported by in situ electrochemical impedance spectroscopy and the distribution of relaxation time, we demonstrate that EPI surpasses the conductivity ceiling imposed by the hydration-limited models. This urgent correction restores the true basis of proton transport and suggests a transformative strategy for designing next-generation oxide electrolytes for electrochemical energy devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 10","pages":"3275–3282"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton Conduction in Oxides Via Electrochemical Proton Injection and Proton–Electron Spillover\",\"authors\":\"Muhammad Faisal Anwar, , , Muhammad Afzal, , , Muhammad Khalid, , , Muhammad Imran Asghar, , , Liangdong Fan, , , Sining Yun, , , Touseef Ahmad, , , Li Sun, , , Peter D Lund*, , and , Bin Zhu*, \",\"doi\":\"10.1021/acsmaterialslett.5c00855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Proton conduction in oxides (PCOs) is traditionally explained by hydration-based equilibrium models, which assume sufficient proton uptake from moisture or hydrogen. However, this static hydration-based framework fails under real operating conditions of proton ceramic fuel cells, where proton injection and field-driven dynamic processes dominate. This disconnection has led to an underestimation of proton concentration and mobility, also limiting the development of advanced PCOs. Here, we establish a distinct fundamental and experimental framework based on electrochemical proton injection (EPI) and proton–electron spillover, which are dynamic processes enabling an enhanced proton transport both in bulk and across grain boundary domains. Supported by in situ electrochemical impedance spectroscopy and the distribution of relaxation time, we demonstrate that EPI surpasses the conductivity ceiling imposed by the hydration-limited models. This urgent correction restores the true basis of proton transport and suggests a transformative strategy for designing next-generation oxide electrolytes for electrochemical energy devices.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 10\",\"pages\":\"3275–3282\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00855\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00855","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Proton Conduction in Oxides Via Electrochemical Proton Injection and Proton–Electron Spillover
Proton conduction in oxides (PCOs) is traditionally explained by hydration-based equilibrium models, which assume sufficient proton uptake from moisture or hydrogen. However, this static hydration-based framework fails under real operating conditions of proton ceramic fuel cells, where proton injection and field-driven dynamic processes dominate. This disconnection has led to an underestimation of proton concentration and mobility, also limiting the development of advanced PCOs. Here, we establish a distinct fundamental and experimental framework based on electrochemical proton injection (EPI) and proton–electron spillover, which are dynamic processes enabling an enhanced proton transport both in bulk and across grain boundary domains. Supported by in situ electrochemical impedance spectroscopy and the distribution of relaxation time, we demonstrate that EPI surpasses the conductivity ceiling imposed by the hydration-limited models. This urgent correction restores the true basis of proton transport and suggests a transformative strategy for designing next-generation oxide electrolytes for electrochemical energy devices.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.