ce掺杂ZnFe2O4尖晶石催化剂中氧空位驱动CO2吸附/活化及Fe5C2相演化

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhijiang Ni*, , , Xiaoyu Chen, , , Lin Su, , , Hanyu Shen, , , Yunlong Jiang, , , Cheng Feng, , and , Chaochuang Yin*, 
{"title":"ce掺杂ZnFe2O4尖晶石催化剂中氧空位驱动CO2吸附/活化及Fe5C2相演化","authors":"Zhijiang Ni*,&nbsp;, ,&nbsp;Xiaoyu Chen,&nbsp;, ,&nbsp;Lin Su,&nbsp;, ,&nbsp;Hanyu Shen,&nbsp;, ,&nbsp;Yunlong Jiang,&nbsp;, ,&nbsp;Cheng Feng,&nbsp;, and ,&nbsp;Chaochuang Yin*,&nbsp;","doi":"10.1021/acssuschemeng.5c05105","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient catalysts for CO<sub>2</sub> conversion to light olefins via hydrogenolysis-driven C–C coupling remains a critical challenge due to the inherent trade-off between CO<sub>2</sub> activation and selective C–C coupling. This study introduces a cerium-doped ZnFe<sub>2</sub>O<sub>4</sub> (Ce<sub><i>n</i></sub>ZFO) spinel catalyst that synergistically enhances CO<sub>2</sub> conversion and olefin selectivity through oxygen vacancy (O<sub>V</sub>) engineering and phase modulation. Incorporating Ce<sup>3+</sup> into the ZnFe<sub>2</sub>O<sub>4</sub> lattice induces lattice distortion and Ce<sup>3+</sup>/Ce<sup>4+</sup> redox cycles, increasing oxygen vacancy (O<sub>V</sub>) concentration from 19.6% in undoped ZFO to 29.3% in Ce<sub>1</sub>ZFO. Such enhancement facilitates CO<sub>2</sub> adsorption (*HCOO stabilization) and suppresses methane formation by inhibiting excessive H<sub>2</sub> dissociation. The optimized Ce<sub>1</sub>ZFO catalyst achieves 38.1% CO<sub>2</sub> conversion (290 °C, 2 MPa) with 46.5% C<sub>2</sub><sup>═</sup>–C<sub>4</sub><sup>═</sup> selectivity and 28.6% C<sub>5</sub><sup>+</sup> yield, outperforming conventional Fe-based catalysts. In situ characterization and DFT calculations reveal that Ce doping promotes Fe<sub>3</sub>O<sub>4</sub> → Fe<sub>5</sub>C<sub>2</sub> transformation, lowering the energy barrier for *HCOO hydrogenation by 19.6% (1.89 vs 2.35 eV) and stabilizing Fe<sub>5</sub>C<sub>2</sub> phases critical for chain growth. The spinel framework inhibits Fe<sub>5</sub>C<sub>2</sub> sintering, ensuring 70 h stability with &lt;5% activity loss. Mechanistic studies identify dual-site activation: O<sub>V</sub>-rich Ce–O–Fe interfaces drive CO<sub>2</sub> dissociation, while electron-deficient Fe sites enable selective C–C coupling. This work establishes a universal design principle-dopant-induced O<sub>V</sub> generation coupled with phase control─for bridging CO<sub>2</sub> activation and olefin synthesis, offering a scalable route to sustainable hydrocarbon production. The catalyst’s space-time yield (4.01 mmol·g<sup>–1</sup>·h<sup>–1</sup>) and low methane selectivity position it as a promising solution for carbon-neutral chemical manufacturing.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 39","pages":"16335–16347"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancy-Driven CO2 Adsorption/Activation and Fe5C2 Phase Evolution in Ce-Doped ZnFe2O4 Spinel Catalysts for Enhanced Light Olefins Production\",\"authors\":\"Zhijiang Ni*,&nbsp;, ,&nbsp;Xiaoyu Chen,&nbsp;, ,&nbsp;Lin Su,&nbsp;, ,&nbsp;Hanyu Shen,&nbsp;, ,&nbsp;Yunlong Jiang,&nbsp;, ,&nbsp;Cheng Feng,&nbsp;, and ,&nbsp;Chaochuang Yin*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.5c05105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient catalysts for CO<sub>2</sub> conversion to light olefins via hydrogenolysis-driven C–C coupling remains a critical challenge due to the inherent trade-off between CO<sub>2</sub> activation and selective C–C coupling. This study introduces a cerium-doped ZnFe<sub>2</sub>O<sub>4</sub> (Ce<sub><i>n</i></sub>ZFO) spinel catalyst that synergistically enhances CO<sub>2</sub> conversion and olefin selectivity through oxygen vacancy (O<sub>V</sub>) engineering and phase modulation. Incorporating Ce<sup>3+</sup> into the ZnFe<sub>2</sub>O<sub>4</sub> lattice induces lattice distortion and Ce<sup>3+</sup>/Ce<sup>4+</sup> redox cycles, increasing oxygen vacancy (O<sub>V</sub>) concentration from 19.6% in undoped ZFO to 29.3% in Ce<sub>1</sub>ZFO. Such enhancement facilitates CO<sub>2</sub> adsorption (*HCOO stabilization) and suppresses methane formation by inhibiting excessive H<sub>2</sub> dissociation. The optimized Ce<sub>1</sub>ZFO catalyst achieves 38.1% CO<sub>2</sub> conversion (290 °C, 2 MPa) with 46.5% C<sub>2</sub><sup>═</sup>–C<sub>4</sub><sup>═</sup> selectivity and 28.6% C<sub>5</sub><sup>+</sup> yield, outperforming conventional Fe-based catalysts. In situ characterization and DFT calculations reveal that Ce doping promotes Fe<sub>3</sub>O<sub>4</sub> → Fe<sub>5</sub>C<sub>2</sub> transformation, lowering the energy barrier for *HCOO hydrogenation by 19.6% (1.89 vs 2.35 eV) and stabilizing Fe<sub>5</sub>C<sub>2</sub> phases critical for chain growth. The spinel framework inhibits Fe<sub>5</sub>C<sub>2</sub> sintering, ensuring 70 h stability with &lt;5% activity loss. Mechanistic studies identify dual-site activation: O<sub>V</sub>-rich Ce–O–Fe interfaces drive CO<sub>2</sub> dissociation, while electron-deficient Fe sites enable selective C–C coupling. This work establishes a universal design principle-dopant-induced O<sub>V</sub> generation coupled with phase control─for bridging CO<sub>2</sub> activation and olefin synthesis, offering a scalable route to sustainable hydrocarbon production. The catalyst’s space-time yield (4.01 mmol·g<sup>–1</sup>·h<sup>–1</sup>) and low methane selectivity position it as a promising solution for carbon-neutral chemical manufacturing.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 39\",\"pages\":\"16335–16347\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05105\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.5c05105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于二氧化碳活化和选择性碳-碳耦合之间的内在权衡,开发通过氢裂解驱动的碳-碳偶联将二氧化碳转化为轻烯烃的高效催化剂仍然是一个关键的挑战。本文介绍了一种掺铈尖晶石催化剂,该催化剂通过氧空位(OV)工程和相位调制协同提高CO2转化率和烯烃选择性。将Ce3+加入到ZnFe2O4晶格中引起晶格畸变和Ce3+/Ce4+氧化还原循环,将氧空位(OV)浓度从未掺杂ZFO的19.6%提高到Ce1ZFO的29.3%。这种增强有利于CO2吸附(*HCOO稳定),并通过抑制过量的H2解离抑制甲烷的形成。优化后的Ce1ZFO催化剂达到38.1%的CO2转化率(290℃,2 MPa),具有46.5%的C2 = -C4 =选择性和28.6%的C5+产率,优于传统的铁基催化剂。原位表征和DFT计算表明,Ce掺杂促进Fe3O4→Fe5C2转变,使*HCOO加氢能垒降低19.6% (1.89 vs 2.35 eV),稳定了Fe5C2链生长的关键相。尖晶石框架抑制Fe5C2烧结,确保70 h稳定性,活性损失<;5%。机制研究确定了双位点激活:富含ov的Ce-O-Fe界面驱动CO2解离,而缺电子的Fe位点则实现了选择性的C-C耦合。这项工作建立了一种通用的设计原则,即掺杂剂诱导的OV生成与相控制相结合,用于桥接CO2活化和烯烃合成,为可持续的碳氢化合物生产提供了可扩展的途径。该催化剂的时空产率(4.01 mmol·g-1·h-1)和低甲烷选择性使其成为碳中性化工制造的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen Vacancy-Driven CO2 Adsorption/Activation and Fe5C2 Phase Evolution in Ce-Doped ZnFe2O4 Spinel Catalysts for Enhanced Light Olefins Production

Oxygen Vacancy-Driven CO2 Adsorption/Activation and Fe5C2 Phase Evolution in Ce-Doped ZnFe2O4 Spinel Catalysts for Enhanced Light Olefins Production

Developing efficient catalysts for CO2 conversion to light olefins via hydrogenolysis-driven C–C coupling remains a critical challenge due to the inherent trade-off between CO2 activation and selective C–C coupling. This study introduces a cerium-doped ZnFe2O4 (CenZFO) spinel catalyst that synergistically enhances CO2 conversion and olefin selectivity through oxygen vacancy (OV) engineering and phase modulation. Incorporating Ce3+ into the ZnFe2O4 lattice induces lattice distortion and Ce3+/Ce4+ redox cycles, increasing oxygen vacancy (OV) concentration from 19.6% in undoped ZFO to 29.3% in Ce1ZFO. Such enhancement facilitates CO2 adsorption (*HCOO stabilization) and suppresses methane formation by inhibiting excessive H2 dissociation. The optimized Ce1ZFO catalyst achieves 38.1% CO2 conversion (290 °C, 2 MPa) with 46.5% C2–C4 selectivity and 28.6% C5+ yield, outperforming conventional Fe-based catalysts. In situ characterization and DFT calculations reveal that Ce doping promotes Fe3O4 → Fe5C2 transformation, lowering the energy barrier for *HCOO hydrogenation by 19.6% (1.89 vs 2.35 eV) and stabilizing Fe5C2 phases critical for chain growth. The spinel framework inhibits Fe5C2 sintering, ensuring 70 h stability with <5% activity loss. Mechanistic studies identify dual-site activation: OV-rich Ce–O–Fe interfaces drive CO2 dissociation, while electron-deficient Fe sites enable selective C–C coupling. This work establishes a universal design principle-dopant-induced OV generation coupled with phase control─for bridging CO2 activation and olefin synthesis, offering a scalable route to sustainable hydrocarbon production. The catalyst’s space-time yield (4.01 mmol·g–1·h–1) and low methane selectivity position it as a promising solution for carbon-neutral chemical manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信