通用机器学习原子间势在固态电解质研究中的评估与应用

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hongwei Du, , , Xiang Huang, , , Jian Hui*, , , Lanting Zhang*, , , Yuanxun Zhou*, , and , Hong Wang*, 
{"title":"通用机器学习原子间势在固态电解质研究中的评估与应用","authors":"Hongwei Du,&nbsp;, ,&nbsp;Xiang Huang,&nbsp;, ,&nbsp;Jian Hui*,&nbsp;, ,&nbsp;Lanting Zhang*,&nbsp;, ,&nbsp;Yuanxun Zhou*,&nbsp;, and ,&nbsp;Hong Wang*,&nbsp;","doi":"10.1021/acsmaterialslett.5c00336","DOIUrl":null,"url":null,"abstract":"<p >High-performance solid-state electrolytes (SSEs) are crucial for next-generation lithium batteries. However, conventional methods like density functional theory and empirical force fields face challenges in computational cost, scalability, and transferability across diverse systems. Machine learning interatomic potentials (MLIPs) offer a promising alternative by balancing accuracy and efficiency. Nevertheless, their performance and applicability for SSEs remain poorly defined, limiting reliable model selection. In this study, we benchmark 12 MLIPs─including GRACE, DPA, MatterSim, MACE, SevenNet, CHGNet, TensorNet, M3GNet, and ORB─across energies, forces, phonons, electrochemical stability, thermodynamic properties, elastic moduli, and Li<sup>+</sup> diffusivity. GRACE-2L-OAM, MACE-MPA, MatterSim, DPA-3.1-3M, and SevenNet-MF-ompa show superior accuracy. Using MatterSim, we study Li<sub>3</sub>YCl<sub>6</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, revealing that ∼40–50% S/Cl anion disorder enhances Li<sup>+</sup> migration connectivity in Li<sub>6</sub>PS<sub>5</sub>Cl, while higher Li<sup>+</sup> content in Li<sub>3</sub>Ycl<sub>6</sub> expands conduction channels and reduces energy barriers. These insights highlight the power of MLIP-driven simulations for mechanistic understanding and rational design of high-conductivity SSEs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 10","pages":"3403–3412"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment and Application of Universal Machine Learning Interatomic Potentials in Solid-State Electrolyte Research\",\"authors\":\"Hongwei Du,&nbsp;, ,&nbsp;Xiang Huang,&nbsp;, ,&nbsp;Jian Hui*,&nbsp;, ,&nbsp;Lanting Zhang*,&nbsp;, ,&nbsp;Yuanxun Zhou*,&nbsp;, and ,&nbsp;Hong Wang*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.5c00336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-performance solid-state electrolytes (SSEs) are crucial for next-generation lithium batteries. However, conventional methods like density functional theory and empirical force fields face challenges in computational cost, scalability, and transferability across diverse systems. Machine learning interatomic potentials (MLIPs) offer a promising alternative by balancing accuracy and efficiency. Nevertheless, their performance and applicability for SSEs remain poorly defined, limiting reliable model selection. In this study, we benchmark 12 MLIPs─including GRACE, DPA, MatterSim, MACE, SevenNet, CHGNet, TensorNet, M3GNet, and ORB─across energies, forces, phonons, electrochemical stability, thermodynamic properties, elastic moduli, and Li<sup>+</sup> diffusivity. GRACE-2L-OAM, MACE-MPA, MatterSim, DPA-3.1-3M, and SevenNet-MF-ompa show superior accuracy. Using MatterSim, we study Li<sub>3</sub>YCl<sub>6</sub> and Li<sub>6</sub>PS<sub>5</sub>Cl, revealing that ∼40–50% S/Cl anion disorder enhances Li<sup>+</sup> migration connectivity in Li<sub>6</sub>PS<sub>5</sub>Cl, while higher Li<sup>+</sup> content in Li<sub>3</sub>Ycl<sub>6</sub> expands conduction channels and reduces energy barriers. These insights highlight the power of MLIP-driven simulations for mechanistic understanding and rational design of high-conductivity SSEs.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 10\",\"pages\":\"3403–3412\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00336\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00336","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高性能固态电解质对下一代锂电池至关重要。然而,密度泛函理论和经验力场等传统方法在计算成本、可扩展性和跨不同系统的可移植性方面面临挑战。机器学习原子间势(MLIPs)通过平衡准确性和效率提供了一种有前途的替代方案。然而,它们的性能和对sse的适用性仍然定义不清,限制了可靠的模型选择。在这项研究中,我们对12个MLIPs(包括GRACE、DPA、MatterSim、MACE、SevenNet、CHGNet、TensorNet、M3GNet和ORB)的能量、力、声子、电化学稳定性、热力学性质、弹性模量和Li+扩散率进行了基准测试。GRACE-2L-OAM, MACE-MPA, MatterSim, DPA-3.1-3M和SevenNet-MF-ompa具有优越的精度。利用MatterSim对Li3YCl6和Li6PS5Cl进行了研究,发现~ 40-50%的S/Cl阴离子紊乱增强了Li6PS5Cl中Li+的迁移连性,而Li3YCl6中较高的Li+含量扩大了传导通道并降低了能量垒。这些见解突出了mlip驱动的模拟在高导电性sse的机理理解和合理设计方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessment and Application of Universal Machine Learning Interatomic Potentials in Solid-State Electrolyte Research

Assessment and Application of Universal Machine Learning Interatomic Potentials in Solid-State Electrolyte Research

High-performance solid-state electrolytes (SSEs) are crucial for next-generation lithium batteries. However, conventional methods like density functional theory and empirical force fields face challenges in computational cost, scalability, and transferability across diverse systems. Machine learning interatomic potentials (MLIPs) offer a promising alternative by balancing accuracy and efficiency. Nevertheless, their performance and applicability for SSEs remain poorly defined, limiting reliable model selection. In this study, we benchmark 12 MLIPs─including GRACE, DPA, MatterSim, MACE, SevenNet, CHGNet, TensorNet, M3GNet, and ORB─across energies, forces, phonons, electrochemical stability, thermodynamic properties, elastic moduli, and Li+ diffusivity. GRACE-2L-OAM, MACE-MPA, MatterSim, DPA-3.1-3M, and SevenNet-MF-ompa show superior accuracy. Using MatterSim, we study Li3YCl6 and Li6PS5Cl, revealing that ∼40–50% S/Cl anion disorder enhances Li+ migration connectivity in Li6PS5Cl, while higher Li+ content in Li3Ycl6 expands conduction channels and reduces energy barriers. These insights highlight the power of MLIP-driven simulations for mechanistic understanding and rational design of high-conductivity SSEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信