{"title":"用于卫生应用的微槽自清洁光滑表面的定向保油和磨损性能","authors":"Ratnadeep Samanta, Sriharitha Rowthu","doi":"10.1016/j.ces.2025.122743","DOIUrl":null,"url":null,"abstract":"Lubricant infused slippery surfaces are vulnerable to external shear flow of fluids (water, air). This study reports the influence of mimicked commode flushing turbulent (<em>Re</em> ∼ 6129) water flow on the silicone oil retention and feces self-cleaning properties in microgrooved polydimethylsiloxane replicas fabricated using banana leaf template. Oil retention amounts are 28 %, 42 %, and 24 % for 20 min of constant turbulent flow in parallel (∥), perpendicular (⊥) directions to grooves and on untextured surfaces, respectively. Post flow, water slide-off angles (SAs) are ∼ 9° for ⊥ flow, ∼14° for ∥ flow, showcasing the retention of slipperiness. On the other hand, untextured surfaces lost their slipperiness. Also, oil retention in air under 200 gliding water droplets shows trend of ⊥ to grooves > ∥ to grooves > untextured. Furthermore, oil coated microgrooves displayed smaller coefficient of friction of 0.35 ± 0.009 (⊥ to grooves), 0.38 ± 0.003 (∥ to grooves), as compared to untextured surfaces (1.73 ± 0.198), when abraded with a steel ball in reciprocating motion using 1 N load, 40 mm⋅s<sup>−1</sup> sliding speed and 10 mm sliding distance. After 30 consecutive cycles of synthetic feces deposition, its residual amount is lowest when sliding on ∥ to grooves as compared to ⊥ to grooves and untextured surfaces. Clearly, a trade-off between ⊥ and ∥ directions to grooves can provide optimal oil retention and self-cleaning properties in sanitation and sewage systems.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"32 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directional oil retention and abrasion properties of microgrooved self-cleaning slippery surfaces for sanitation applications\",\"authors\":\"Ratnadeep Samanta, Sriharitha Rowthu\",\"doi\":\"10.1016/j.ces.2025.122743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lubricant infused slippery surfaces are vulnerable to external shear flow of fluids (water, air). This study reports the influence of mimicked commode flushing turbulent (<em>Re</em> ∼ 6129) water flow on the silicone oil retention and feces self-cleaning properties in microgrooved polydimethylsiloxane replicas fabricated using banana leaf template. Oil retention amounts are 28 %, 42 %, and 24 % for 20 min of constant turbulent flow in parallel (∥), perpendicular (⊥) directions to grooves and on untextured surfaces, respectively. Post flow, water slide-off angles (SAs) are ∼ 9° for ⊥ flow, ∼14° for ∥ flow, showcasing the retention of slipperiness. On the other hand, untextured surfaces lost their slipperiness. Also, oil retention in air under 200 gliding water droplets shows trend of ⊥ to grooves > ∥ to grooves > untextured. Furthermore, oil coated microgrooves displayed smaller coefficient of friction of 0.35 ± 0.009 (⊥ to grooves), 0.38 ± 0.003 (∥ to grooves), as compared to untextured surfaces (1.73 ± 0.198), when abraded with a steel ball in reciprocating motion using 1 N load, 40 mm⋅s<sup>−1</sup> sliding speed and 10 mm sliding distance. After 30 consecutive cycles of synthetic feces deposition, its residual amount is lowest when sliding on ∥ to grooves as compared to ⊥ to grooves and untextured surfaces. Clearly, a trade-off between ⊥ and ∥ directions to grooves can provide optimal oil retention and self-cleaning properties in sanitation and sewage systems.\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ces.2025.122743\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.122743","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Directional oil retention and abrasion properties of microgrooved self-cleaning slippery surfaces for sanitation applications
Lubricant infused slippery surfaces are vulnerable to external shear flow of fluids (water, air). This study reports the influence of mimicked commode flushing turbulent (Re ∼ 6129) water flow on the silicone oil retention and feces self-cleaning properties in microgrooved polydimethylsiloxane replicas fabricated using banana leaf template. Oil retention amounts are 28 %, 42 %, and 24 % for 20 min of constant turbulent flow in parallel (∥), perpendicular (⊥) directions to grooves and on untextured surfaces, respectively. Post flow, water slide-off angles (SAs) are ∼ 9° for ⊥ flow, ∼14° for ∥ flow, showcasing the retention of slipperiness. On the other hand, untextured surfaces lost their slipperiness. Also, oil retention in air under 200 gliding water droplets shows trend of ⊥ to grooves > ∥ to grooves > untextured. Furthermore, oil coated microgrooves displayed smaller coefficient of friction of 0.35 ± 0.009 (⊥ to grooves), 0.38 ± 0.003 (∥ to grooves), as compared to untextured surfaces (1.73 ± 0.198), when abraded with a steel ball in reciprocating motion using 1 N load, 40 mm⋅s−1 sliding speed and 10 mm sliding distance. After 30 consecutive cycles of synthetic feces deposition, its residual amount is lowest when sliding on ∥ to grooves as compared to ⊥ to grooves and untextured surfaces. Clearly, a trade-off between ⊥ and ∥ directions to grooves can provide optimal oil retention and self-cleaning properties in sanitation and sewage systems.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.