Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel
{"title":"硼罗芬的超润滑性:与hBN的摩擦学性能比较","authors":"Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel","doi":"10.1021/acsnano.5c11587","DOIUrl":null,"url":null,"abstract":"The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS<sub>2</sub>, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated <i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.48em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Script-italic;\">𝒳</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></script>-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of <i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.48em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Script-italic;\">𝒳</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></script>-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"105 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlubricity of Borophene: Tribological Properties in Comparison to hBN\",\"authors\":\"Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel\",\"doi\":\"10.1021/acsnano.5c11587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS<sub>2</sub>, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.48em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Script-italic;\\\">𝒳</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -3.804em; left: 0.912em;\\\"><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">6</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></script>-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.48em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Script-italic;\\\">𝒳</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -3.804em; left: 0.912em;\\\"><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">6</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></script>-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c11587\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c11587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Superlubricity of Borophene: Tribological Properties in Comparison to hBN
The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS2, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated 𝒳6-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of 𝒳6-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.