硼罗芬的超润滑性:与hBN的摩擦学性能比较

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-05 DOI:10.1021/acsnano.5c11587
Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel
{"title":"硼罗芬的超润滑性:与hBN的摩擦学性能比较","authors":"Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel","doi":"10.1021/acsnano.5c11587","DOIUrl":null,"url":null,"abstract":"The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS<sub>2</sub>, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi mathvariant=\"script\"&gt;X&lt;/mi&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.48em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Script-italic;\">𝒳</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></script>-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi mathvariant=\"script\"&gt;X&lt;/mi&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 1.48em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Script-italic;\">𝒳</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.912em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">6</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi mathvariant=\"script\">X</mi><mn>6</mn></msub></math></script>-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"105 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superlubricity of Borophene: Tribological Properties in Comparison to hBN\",\"authors\":\"Antoine Hinaut, B. Sena Tömekçe, Shuyu Huang, Yiming Song, Ernst Meyer, Antonio Cammarata, Willi Auwärter, Thilo Glatzel\",\"doi\":\"10.1021/acsnano.5c11587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS<sub>2</sub>, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;msub&gt;&lt;mi mathvariant=\\\"script\\\"&gt;X&lt;/mi&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.48em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Script-italic;\\\">𝒳</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -3.804em; left: 0.912em;\\\"><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">6</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></script>-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;msub&gt;&lt;mi mathvariant=\\\"script\\\"&gt;X&lt;/mi&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 1.48em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.31em, 1001.31em, 2.503em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.31em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.128em, 1000.86em, 4.151em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Script-italic;\\\">𝒳</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; top: -3.804em; left: 0.912em;\\\"><span style=\\\"font-size: 70.7%; font-family: STIXMathJax_Main;\\\">6</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.247em; border-left: 0px solid; width: 0px; height: 1.066em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msub><mi mathvariant=\\\"script\\\">X</mi><mn>6</mn></msub></math></script>-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c11587\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c11587","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维材料的摩擦学性能使其成为宏观尺度上减少摩擦的良好候选材料。石墨烯、MoS2和MXenes具有超润滑性,而六方氮化硼(hBN)用于减少或调节摩擦。其他材料作为低润滑应用的潜在候选材料也在研究中。具体来说,波罗芬预计具有超低摩擦。在这里,我们实验研究了硼罗芬的摩擦性能,并使用硼罗芬/hBN横向异质结构直接比较了两种互补的二维材料的摩擦学性能。特别地,我们研究了滑动尖端与(i) Ir(111)上的弱波纹𝒳6X6X6-borophene层或(ii)具有强波纹moirir重建的hBN/Ir(111)超晶格结构之间的摩擦。我们在室温下的超高真空条件下进行的实验研究,结合Prandtl-Tomlinson (PT)模型计算,证实了borophene的超润滑预测,而hBN具有更高的摩擦,但仍然被证实是一种低摩擦材料。从头计算表明,𝒳6X6X6-borophene相对于hBN的较低摩擦可以通过较弱的尖端/表面相互作用来解释。此外,我们利用扫描探针技术评估了硼罗芬和hBN的结构和电学性能,并比较了它们在振荡尖端下的耗散,以研究摩擦过程中能量耗散的可能路径。我们的研究证明了硼罗芬的低摩擦性能和横向异质结构研究的潜力,可以直接比较这些二维材料的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superlubricity of Borophene: Tribological Properties in Comparison to hBN

Superlubricity of Borophene: Tribological Properties in Comparison to hBN
The tribological performance of 2D materials makes them good candidates toward a reduction of friction at the macroscale. Superlubricity has been observed for graphene, MoS2, and MXenes, whereas hexagonal boron nitride (hBN) is used to reduce or tune friction. Other materials are investigated as potential candidates for low-lubricity applications. Specifically, borophene is predicted to have ultralow friction. Here, we experimentally investigate the frictional properties of borophene and use a borophene/hBN lateral heterostructure to directly compare the tribological properties of the two complementary 2D materials. In particular, we investigate the friction between a sliding tip and (i) the weakly corrugated X6-borophene layer on Ir(111) or (ii) the hBN/Ir(111) superlattice structures with a strongly corrugated moiré reconstruction. Our experimental study performed in ultrahigh vacuum at room temperature combined with a Prandtl–Tomlinson (PT) model calculation confirms the superlubricity predicted for borophene, while hBN, which exhibits a higher friction, is nevertheless confirmed as a low friction material. Ab initio calculations show that the lower friction of X6-borophene with respect to hBN can be rationalized by weaker tip/surface interactions. In addition, we assess structural and electrical properties of borophene and hBN by using scanning probe techniques and compare their dissipation under the oscillating tip to investigate the possible path of energy dissipation occurring during friction. Our study demonstrates the low frictional properties of borophene and the potential of lateral heterostructure investigations to directly compare the properties of these 2D materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信