al掺杂ZnO介晶分层结构工程的温度驱动策略

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Guohui Yang*, , , Marcel Kévin Jiokeng Dongmo, , , Leon Salomon, , , Simon Buchheiser, , , Thomas Meurer, , and , Hermann Nirschl, 
{"title":"al掺杂ZnO介晶分层结构工程的温度驱动策略","authors":"Guohui Yang*,&nbsp;, ,&nbsp;Marcel Kévin Jiokeng Dongmo,&nbsp;, ,&nbsp;Leon Salomon,&nbsp;, ,&nbsp;Simon Buchheiser,&nbsp;, ,&nbsp;Thomas Meurer,&nbsp;, and ,&nbsp;Hermann Nirschl,&nbsp;","doi":"10.1021/acs.iecr.5c02055","DOIUrl":null,"url":null,"abstract":"<p >Nanomaterial functionality is influenced by particle size, morphology, and composition. This study introduces a novel temperature-controlled sol–gel method to tailor hierarchical nanostructures, utilizing Al-doped ZnO (AZO) nanoparticles as a case study. AZOs’ electrical and optical properties are critical for photovoltaics applications, where controlling crystal properties to optimize conductivity and transparency is key. AZO nanoparticles were synthesized from zinc acetylacetonate hydrate, aluminum isopropoxide, and benzylamine in a closed batch reactor. By adjusting temperature profiles, controlling synthesis temperature and ramp-up duration under an exponential (PT1) heating scheme, the method enabled the formation of a three-level hierarchical architecture, in which primary AZO nanocrystals assembled into mesocrystals that subsequently aggregated into larger structures. Characterization via electron microscopy, X-ray scattering, and dynamic light scattering reveals that minor temperature variations (105 to 125 °C) affect particle morphologies, exhibiting tunable size, ranging from 18 to 41 nm, with higher temperatures promoting aggregation despite existing structure shrinkage. This highlights the strong dependency of nucleation and structural formation on temperature profiles, offering a versatile method for tuning nanomaterials for advanced applications.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 41","pages":"19908–19923"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5c02055","citationCount":"0","resultStr":"{\"title\":\"Temperature-Driven Strategy for Engineering of Al-Doped ZnO Mesocrystals’ Hierarchical Architecture\",\"authors\":\"Guohui Yang*,&nbsp;, ,&nbsp;Marcel Kévin Jiokeng Dongmo,&nbsp;, ,&nbsp;Leon Salomon,&nbsp;, ,&nbsp;Simon Buchheiser,&nbsp;, ,&nbsp;Thomas Meurer,&nbsp;, and ,&nbsp;Hermann Nirschl,&nbsp;\",\"doi\":\"10.1021/acs.iecr.5c02055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Nanomaterial functionality is influenced by particle size, morphology, and composition. This study introduces a novel temperature-controlled sol–gel method to tailor hierarchical nanostructures, utilizing Al-doped ZnO (AZO) nanoparticles as a case study. AZOs’ electrical and optical properties are critical for photovoltaics applications, where controlling crystal properties to optimize conductivity and transparency is key. AZO nanoparticles were synthesized from zinc acetylacetonate hydrate, aluminum isopropoxide, and benzylamine in a closed batch reactor. By adjusting temperature profiles, controlling synthesis temperature and ramp-up duration under an exponential (PT1) heating scheme, the method enabled the formation of a three-level hierarchical architecture, in which primary AZO nanocrystals assembled into mesocrystals that subsequently aggregated into larger structures. Characterization via electron microscopy, X-ray scattering, and dynamic light scattering reveals that minor temperature variations (105 to 125 °C) affect particle morphologies, exhibiting tunable size, ranging from 18 to 41 nm, with higher temperatures promoting aggregation despite existing structure shrinkage. This highlights the strong dependency of nucleation and structural formation on temperature profiles, offering a versatile method for tuning nanomaterials for advanced applications.</p>\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"64 41\",\"pages\":\"19908–19923\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.5c02055\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.iecr.5c02055\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.5c02055","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料的功能受粒径、形貌和组成的影响。本研究以al掺杂ZnO (AZO)纳米粒子为例,介绍了一种新的温度控制溶胶-凝胶方法来定制分层纳米结构。AZOs的电学和光学性质对于光伏应用至关重要,其中控制晶体性质以优化电导率和透明度是关键。以水合乙酰丙酮锌、异丙醇铝和苄胺为原料,在封闭间歇反应器中合成了AZO纳米颗粒。通过调整温度分布,控制合成温度和指数加热(PT1)下的升温时间,该方法能够形成三层分层结构,其中初级AZO纳米晶体组装成中晶,随后聚集成更大的结构。通过电子显微镜、x射线散射和动态光散射的表征表明,微小的温度变化(105至125°C)会影响颗粒形态,表现出18至41 nm的可调尺寸,尽管现有结构收缩,但较高的温度会促进聚集。这突出了成核和结构形成对温度分布的强烈依赖性,为调谐纳米材料的高级应用提供了一种通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature-Driven Strategy for Engineering of Al-Doped ZnO Mesocrystals’ Hierarchical Architecture

Temperature-Driven Strategy for Engineering of Al-Doped ZnO Mesocrystals’ Hierarchical Architecture

Nanomaterial functionality is influenced by particle size, morphology, and composition. This study introduces a novel temperature-controlled sol–gel method to tailor hierarchical nanostructures, utilizing Al-doped ZnO (AZO) nanoparticles as a case study. AZOs’ electrical and optical properties are critical for photovoltaics applications, where controlling crystal properties to optimize conductivity and transparency is key. AZO nanoparticles were synthesized from zinc acetylacetonate hydrate, aluminum isopropoxide, and benzylamine in a closed batch reactor. By adjusting temperature profiles, controlling synthesis temperature and ramp-up duration under an exponential (PT1) heating scheme, the method enabled the formation of a three-level hierarchical architecture, in which primary AZO nanocrystals assembled into mesocrystals that subsequently aggregated into larger structures. Characterization via electron microscopy, X-ray scattering, and dynamic light scattering reveals that minor temperature variations (105 to 125 °C) affect particle morphologies, exhibiting tunable size, ranging from 18 to 41 nm, with higher temperatures promoting aggregation despite existing structure shrinkage. This highlights the strong dependency of nucleation and structural formation on temperature profiles, offering a versatile method for tuning nanomaterials for advanced applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信