蛋白质表面化学编码对干燥的适应性耐受性。

IF 7.7
Paulette Sofía Romero-Pérez, Haley M Moran, David P Cordone, Azeem Horani, Alexander Truong, Edgar Manriquez-Sandoval, John F Ramirez, Alec Martinez, Edith Gollub, Kara Hunter, Kavindu C Kolamunna, Jeffrey M Lotthammer, Ryan J Emenecker, Hui Liu, Janet H Iwasa, Thomas C Boothby, Alex S Holehouse, Stephen D Fried, Shahar Sukenik
{"title":"蛋白质表面化学编码对干燥的适应性耐受性。","authors":"Paulette Sofía Romero-Pérez, Haley M Moran, David P Cordone, Azeem Horani, Alexander Truong, Edgar Manriquez-Sandoval, John F Ramirez, Alec Martinez, Edith Gollub, Kara Hunter, Kavindu C Kolamunna, Jeffrey M Lotthammer, Ryan J Emenecker, Hui Liu, Janet H Iwasa, Thomas C Boothby, Alex S Holehouse, Stephen D Fried, Shahar Sukenik","doi":"10.1016/j.cels.2025.101407","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular desiccation-the loss of nearly all water from the cell-is a recurring stress that drives widespread protein dysfunction. To survive, part of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we use quantitative mass spectrometry and structural proteomics to show that certain proteins possess an innate capacity to tolerate extreme water loss. Structural analyses point to protein surface chemistry as a key determinant of desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation-sensitive protein into a tolerant one. We also find that highly tolerant proteins are responsible for the production of small-molecule building blocks, while intolerant proteins are involved in energy-consuming processes such as ribosome biogenesis. We propose that this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101407"},"PeriodicalIF":7.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein surface chemistry encodes an adaptive tolerance to desiccation.\",\"authors\":\"Paulette Sofía Romero-Pérez, Haley M Moran, David P Cordone, Azeem Horani, Alexander Truong, Edgar Manriquez-Sandoval, John F Ramirez, Alec Martinez, Edith Gollub, Kara Hunter, Kavindu C Kolamunna, Jeffrey M Lotthammer, Ryan J Emenecker, Hui Liu, Janet H Iwasa, Thomas C Boothby, Alex S Holehouse, Stephen D Fried, Shahar Sukenik\",\"doi\":\"10.1016/j.cels.2025.101407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellular desiccation-the loss of nearly all water from the cell-is a recurring stress that drives widespread protein dysfunction. To survive, part of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we use quantitative mass spectrometry and structural proteomics to show that certain proteins possess an innate capacity to tolerate extreme water loss. Structural analyses point to protein surface chemistry as a key determinant of desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation-sensitive protein into a tolerant one. We also find that highly tolerant proteins are responsible for the production of small-molecule building blocks, while intolerant proteins are involved in energy-consuming processes such as ribosome biogenesis. We propose that this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101407\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞干燥——细胞中几乎所有水分的流失——是一种反复出现的压力,它会导致广泛的蛋白质功能障碍。为了存活,部分蛋白质组必须在补水后恢复功能。哪些蛋白质能耐受干燥,以及这种耐受背后的分子决定因素在很大程度上是未知的。在这里,我们使用定量质谱和结构蛋白质组学来显示某些蛋白质具有天生的能力来忍受极端的水分流失。结构分析指出,蛋白质表面化学是干燥耐受性的关键决定因素,我们通过显示合理的表面突变可以将干燥敏感蛋白转化为耐受性蛋白来验证这一点。我们还发现,高耐受性蛋白质负责小分子构建块的产生,而不耐受性蛋白质参与能量消耗过程,如核糖体生物发生。我们认为,这种功能偏差使细胞能够启动新陈代谢,促进细胞在脱水和补水后的存活。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Protein surface chemistry encodes an adaptive tolerance to desiccation.

Cellular desiccation-the loss of nearly all water from the cell-is a recurring stress that drives widespread protein dysfunction. To survive, part of the proteome must resume function upon rehydration. Which proteins tolerate desiccation, and the molecular determinants that underlie this tolerance, are largely unknown. Here, we use quantitative mass spectrometry and structural proteomics to show that certain proteins possess an innate capacity to tolerate extreme water loss. Structural analyses point to protein surface chemistry as a key determinant of desiccation tolerance, which we test by showing that rational surface mutants can convert a desiccation-sensitive protein into a tolerant one. We also find that highly tolerant proteins are responsible for the production of small-molecule building blocks, while intolerant proteins are involved in energy-consuming processes such as ribosome biogenesis. We propose that this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信