Sobhan Shukueian Tabrizi, Sina Barazandeh, Helyasadat Hashemi Aghdam, A Ercument Cicek
{"title":"rnatransator:将蛋白质条件RNA设计建模为序列到序列的自然语言翻译。","authors":"Sobhan Shukueian Tabrizi, Sina Barazandeh, Helyasadat Hashemi Aghdam, A Ercument Cicek","doi":"10.1371/journal.pcbi.1013541","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-RNA interactions are essential in gene regulation, splicing, RNA stability, and translation, making RNA a promising therapeutic agent for targeting proteins, including those considered undruggable. However, designing RNA sequences that selectively bind to proteins remains a significant challenge due to the vast sequence space and limitations of current experimental and computational methods. Traditional approaches rely on in vitro selection techniques or computational models that require post-generation optimization, restricting their applicability to well-characterized proteins. We introduce RNAtranslator, a generative language model that formulates protein-conditional RNA design as a sequence-to-sequence natural language translation problem for the first time. By learning a joint representation of RNA and protein interactions from large-scale datasets, RNAtranslator directly generates binding RNA sequences for any given protein target without the need for additional optimization. Our results demonstrate that RNAtranslator produces RNA sequences with natural-like properties, high novelty, and enhanced binding affinity compared to existing methods. This approach enables efficient RNA design for a wide range of proteins and even proteins with no RNA-interaction data available, paving the way for new RNA-based therapeutics and synthetic biology applications.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013541"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510665/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNAtranslator: Modeling protein-conditional RNA design as sequence-to-sequence natural language translation.\",\"authors\":\"Sobhan Shukueian Tabrizi, Sina Barazandeh, Helyasadat Hashemi Aghdam, A Ercument Cicek\",\"doi\":\"10.1371/journal.pcbi.1013541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-RNA interactions are essential in gene regulation, splicing, RNA stability, and translation, making RNA a promising therapeutic agent for targeting proteins, including those considered undruggable. However, designing RNA sequences that selectively bind to proteins remains a significant challenge due to the vast sequence space and limitations of current experimental and computational methods. Traditional approaches rely on in vitro selection techniques or computational models that require post-generation optimization, restricting their applicability to well-characterized proteins. We introduce RNAtranslator, a generative language model that formulates protein-conditional RNA design as a sequence-to-sequence natural language translation problem for the first time. By learning a joint representation of RNA and protein interactions from large-scale datasets, RNAtranslator directly generates binding RNA sequences for any given protein target without the need for additional optimization. Our results demonstrate that RNAtranslator produces RNA sequences with natural-like properties, high novelty, and enhanced binding affinity compared to existing methods. This approach enables efficient RNA design for a wide range of proteins and even proteins with no RNA-interaction data available, paving the way for new RNA-based therapeutics and synthetic biology applications.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013541\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013541\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013541","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
RNAtranslator: Modeling protein-conditional RNA design as sequence-to-sequence natural language translation.
Protein-RNA interactions are essential in gene regulation, splicing, RNA stability, and translation, making RNA a promising therapeutic agent for targeting proteins, including those considered undruggable. However, designing RNA sequences that selectively bind to proteins remains a significant challenge due to the vast sequence space and limitations of current experimental and computational methods. Traditional approaches rely on in vitro selection techniques or computational models that require post-generation optimization, restricting their applicability to well-characterized proteins. We introduce RNAtranslator, a generative language model that formulates protein-conditional RNA design as a sequence-to-sequence natural language translation problem for the first time. By learning a joint representation of RNA and protein interactions from large-scale datasets, RNAtranslator directly generates binding RNA sequences for any given protein target without the need for additional optimization. Our results demonstrate that RNAtranslator produces RNA sequences with natural-like properties, high novelty, and enhanced binding affinity compared to existing methods. This approach enables efficient RNA design for a wide range of proteins and even proteins with no RNA-interaction data available, paving the way for new RNA-based therapeutics and synthetic biology applications.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.