个体样本特异性基因组合效应多层编码器预测模型(MLEC-iGeneCombo)。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
PLoS Computational Biology Pub Date : 2025-10-03 eCollection Date: 2025-10-01 DOI:10.1371/journal.pcbi.1013547
Yun Shen, Kunjie Fan, Birkan Gökbağ, Nuo Sun, Chen Yang, Lijun Cheng, Lang Li
{"title":"个体样本特异性基因组合效应多层编码器预测模型(MLEC-iGeneCombo)。","authors":"Yun Shen, Kunjie Fan, Birkan Gökbağ, Nuo Sun, Chen Yang, Lijun Cheng, Lang Li","doi":"10.1371/journal.pcbi.1013547","DOIUrl":null,"url":null,"abstract":"<p><p>Using data from gene combination double knockout (CDKO) experiments, top ranked synthetic lethal (SL) gene pairs were highly inconsistent among different SL scores. This leads to a significant concern that SL prediction models highly depend on SL scores. In this paper, we introduce a new gene combination effect (GCE) measurement, log-fold change of dual-gRNA expression before and after CRISPR-cas9 lentivirus transfection. We show it is a direct and highly consistent measurement of GCE in all CDKO experiments. We therefore develop a multi-layer encoder model for individual sample specific GCE prediction, MLEC-iGeneCombo. Under a deep learning framework, MLEC-iGeneCombo is a systems biology model that contains sample specific multi-omics encoder, network encoder and cell-line encoder. For the first time, MLEC-iGeneCombo predicts GCE for a new cell. Using data from 18 CDKO experiments, MLEC-iGeneCombo achieves an average GCE prediction performance, 71.9%. All three encoders significantly improve the model's prediction performance (p[Formula: see text]), and their combined use yields the best GCE prediction performance. Our source code is available at https://github.com/karenyun/MLEC-iGeneCombo.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013547"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510635/pdf/","citationCount":"0","resultStr":"{\"title\":\"A multi-layer encoder prediction model for individual sample specific gene combination effect (MLEC-iGeneCombo).\",\"authors\":\"Yun Shen, Kunjie Fan, Birkan Gökbağ, Nuo Sun, Chen Yang, Lijun Cheng, Lang Li\",\"doi\":\"10.1371/journal.pcbi.1013547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Using data from gene combination double knockout (CDKO) experiments, top ranked synthetic lethal (SL) gene pairs were highly inconsistent among different SL scores. This leads to a significant concern that SL prediction models highly depend on SL scores. In this paper, we introduce a new gene combination effect (GCE) measurement, log-fold change of dual-gRNA expression before and after CRISPR-cas9 lentivirus transfection. We show it is a direct and highly consistent measurement of GCE in all CDKO experiments. We therefore develop a multi-layer encoder model for individual sample specific GCE prediction, MLEC-iGeneCombo. Under a deep learning framework, MLEC-iGeneCombo is a systems biology model that contains sample specific multi-omics encoder, network encoder and cell-line encoder. For the first time, MLEC-iGeneCombo predicts GCE for a new cell. Using data from 18 CDKO experiments, MLEC-iGeneCombo achieves an average GCE prediction performance, 71.9%. All three encoders significantly improve the model's prediction performance (p[Formula: see text]), and their combined use yields the best GCE prediction performance. Our source code is available at https://github.com/karenyun/MLEC-iGeneCombo.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013547\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510635/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013547\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013547","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

基因组合双敲除(CDKO)实验数据显示,合成致死(SL)基因对的排名在不同SL评分中高度不一致。这导致了一个重要的问题,即SL预测模型高度依赖于SL分数。本文介绍了一种新的基因组合效应(GCE)测量方法,即转染CRISPR-cas9慢病毒前后双grna表达的对数倍变化。我们表明,在所有CDKO实验中,它是GCE的直接和高度一致的测量。因此,我们开发了一种多层编码器模型,用于个体样本特定的GCE预测,MLEC-iGeneCombo。在深度学习框架下,MLEC-iGeneCombo是一个包含样本特异性多组学编码器、网络编码器和细胞系编码器的系统生物学模型。MLEC-iGeneCombo首次预测了新细胞的GCE。使用来自18个CDKO实验的数据,MLEC-iGeneCombo的平均GCE预测性能为71.9%。所有三种编码器都显著提高了模型的预测性能(p[公式:见文本]),并且它们的组合使用产生了最佳的GCE预测性能。我们的源代码可从https://github.com/karenyun/MLEC-iGeneCombo获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multi-layer encoder prediction model for individual sample specific gene combination effect (MLEC-iGeneCombo).

A multi-layer encoder prediction model for individual sample specific gene combination effect (MLEC-iGeneCombo).

A multi-layer encoder prediction model for individual sample specific gene combination effect (MLEC-iGeneCombo).

A multi-layer encoder prediction model for individual sample specific gene combination effect (MLEC-iGeneCombo).

Using data from gene combination double knockout (CDKO) experiments, top ranked synthetic lethal (SL) gene pairs were highly inconsistent among different SL scores. This leads to a significant concern that SL prediction models highly depend on SL scores. In this paper, we introduce a new gene combination effect (GCE) measurement, log-fold change of dual-gRNA expression before and after CRISPR-cas9 lentivirus transfection. We show it is a direct and highly consistent measurement of GCE in all CDKO experiments. We therefore develop a multi-layer encoder model for individual sample specific GCE prediction, MLEC-iGeneCombo. Under a deep learning framework, MLEC-iGeneCombo is a systems biology model that contains sample specific multi-omics encoder, network encoder and cell-line encoder. For the first time, MLEC-iGeneCombo predicts GCE for a new cell. Using data from 18 CDKO experiments, MLEC-iGeneCombo achieves an average GCE prediction performance, 71.9%. All three encoders significantly improve the model's prediction performance (p[Formula: see text]), and their combined use yields the best GCE prediction performance. Our source code is available at https://github.com/karenyun/MLEC-iGeneCombo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信