Zixiang Jiang, Dakang Zhang, Pinzhi Wang, Le Yin, Hao Xu
{"title":"铁催化的1,2-顺式氨基糖苷组装的立体选择性糖基化。","authors":"Zixiang Jiang, Dakang Zhang, Pinzhi Wang, Le Yin, Hao Xu","doi":"10.1038/s41596-025-01263-4","DOIUrl":null,"url":null,"abstract":"<p><p>Complex carbohydrates are essential to life processes, but it is challenging to isolate these molecules from natural sources in high homogeneity. Therefore, complex-glycan synthesis becomes critical to improving our understanding of their important functions. Due to their complexity, synthesis is still difficult for nonexperts. One of the key challenges is to search for general solutions for highly 1,2-cis-selective glycosylation, which will directly assemble 1,2-cis-2-aminoglycosides that are incorporated in numerous biologically important complex glycans and glycoconjugates. Here we describe an iron-catalyzed, chemical glycosylation method for rapid assembly of 1,2-cis-aminoglycosidic linkages. The iron catalyst is commercially available, and the bench-stable supporting ligand and amination reagents are easily prepared from abundant, readily available starting materials. This catalytic, exclusively 1,2-cis-selective glycosylation is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a continuous fashion and scaled up to the multigram scale. The reactivity of this glycosylation is tunable for both electron-rich and electron-deficient substrates by modulating amination reagents. The glycosylation proceeds through a unique mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This glycosylation protocol takes several hours to operate. It complements the existing 1,2-cis-selective glycosylation methods and effectively addresses the challenge of achieving both generality and high stereoselectivity in the 1,2-cis-selective aminoglycosylation.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron-catalyzed stereoselective glycosylation for 1,2-cis-aminoglycoside assembly.\",\"authors\":\"Zixiang Jiang, Dakang Zhang, Pinzhi Wang, Le Yin, Hao Xu\",\"doi\":\"10.1038/s41596-025-01263-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Complex carbohydrates are essential to life processes, but it is challenging to isolate these molecules from natural sources in high homogeneity. Therefore, complex-glycan synthesis becomes critical to improving our understanding of their important functions. Due to their complexity, synthesis is still difficult for nonexperts. One of the key challenges is to search for general solutions for highly 1,2-cis-selective glycosylation, which will directly assemble 1,2-cis-2-aminoglycosides that are incorporated in numerous biologically important complex glycans and glycoconjugates. Here we describe an iron-catalyzed, chemical glycosylation method for rapid assembly of 1,2-cis-aminoglycosidic linkages. The iron catalyst is commercially available, and the bench-stable supporting ligand and amination reagents are easily prepared from abundant, readily available starting materials. This catalytic, exclusively 1,2-cis-selective glycosylation is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a continuous fashion and scaled up to the multigram scale. The reactivity of this glycosylation is tunable for both electron-rich and electron-deficient substrates by modulating amination reagents. The glycosylation proceeds through a unique mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This glycosylation protocol takes several hours to operate. It complements the existing 1,2-cis-selective glycosylation methods and effectively addresses the challenge of achieving both generality and high stereoselectivity in the 1,2-cis-selective aminoglycosylation.</p>\",\"PeriodicalId\":18901,\"journal\":{\"name\":\"Nature Protocols\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Protocols\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41596-025-01263-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01263-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Iron-catalyzed stereoselective glycosylation for 1,2-cis-aminoglycoside assembly.
Complex carbohydrates are essential to life processes, but it is challenging to isolate these molecules from natural sources in high homogeneity. Therefore, complex-glycan synthesis becomes critical to improving our understanding of their important functions. Due to their complexity, synthesis is still difficult for nonexperts. One of the key challenges is to search for general solutions for highly 1,2-cis-selective glycosylation, which will directly assemble 1,2-cis-2-aminoglycosides that are incorporated in numerous biologically important complex glycans and glycoconjugates. Here we describe an iron-catalyzed, chemical glycosylation method for rapid assembly of 1,2-cis-aminoglycosidic linkages. The iron catalyst is commercially available, and the bench-stable supporting ligand and amination reagents are easily prepared from abundant, readily available starting materials. This catalytic, exclusively 1,2-cis-selective glycosylation is effective for a broad range of glycosyl donors and acceptors, and it can be operated in a continuous fashion and scaled up to the multigram scale. The reactivity of this glycosylation is tunable for both electron-rich and electron-deficient substrates by modulating amination reagents. The glycosylation proceeds through a unique mechanism in which the iron catalyst activates a glycosyl acceptor and an oxidant when it facilitates the cooperative atom transfer of both moieties to a glycosyl donor in an exclusively cis-selective manner. This glycosylation protocol takes several hours to operate. It complements the existing 1,2-cis-selective glycosylation methods and effectively addresses the challenge of achieving both generality and high stereoselectivity in the 1,2-cis-selective aminoglycosylation.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.