Hongru Du, Matthew V Zahn, Sara L Loo, Tijs W Alleman, Shaun Truelove, Bryan Patenaude, Lauren M Gardner, Nicholas Papageorge, Alison L Hill
{"title":"利用经济选择和带有行为反馈的疾病动力学的综合模型改进政策设计和流行病应对。","authors":"Hongru Du, Matthew V Zahn, Sara L Loo, Tijs W Alleman, Shaun Truelove, Bryan Patenaude, Lauren M Gardner, Nicholas Papageorge, Alison L Hill","doi":"10.1371/journal.pcbi.1013549","DOIUrl":null,"url":null,"abstract":"<p><p>Human behavior plays a crucial role in infectious disease transmission, yet traditional models often overlook or oversimplify this factor, limiting predictions of disease spread and the associated socioeconomic impacts. Here we introduce a feedback-informed epidemiological model that integrates human behavior with disease dynamics in a credible, tractable, and extendable manner. From economics, we incorporate a dynamic decision-making model where individuals assess the trade-off between disease risks and economic consequences, and then link this to a risk-stratified compartmental model of disease spread taken from epidemiology. In the unified framework, heterogeneous individuals make choices based on current and future payoffs, influencing their risk of infection and shaping population-level disease dynamics. As an example, we model disease-decision feedback during the early months of the COVID-19 pandemic, when the decision to participate in paid, in-person work was a major determinant of disease risk. Comparing the impacts of stylized policy options representing mandatory, incentivized/compensated, and voluntary work abstention, we find that accounting for disease-behavior feedback has a significant impact on the relative health and economic impacts of policies. Including two crucial dimensions of heterogeneity-health and economic vulnerability-the results highlight how inequities between risk groups can be exacerbated or alleviated by disease control measures. Importantly, we show that a policy of more stringent workplace testing can potentially slow virus spread and, surprisingly, increase labor supply since individuals otherwise inclined to remain at home to avoid infection perceive a safer workplace. In short, our framework permits the exploration of avenues whereby health and wealth need not always be at odds. This flexible and extendable modeling framework offers a powerful tool for understanding the interplay between human behavior and disease spread.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 10","pages":"e1013549"},"PeriodicalIF":3.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510651/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving policy design and epidemic response using integrated models of economic choice and disease dynamics with behavioral feedback.\",\"authors\":\"Hongru Du, Matthew V Zahn, Sara L Loo, Tijs W Alleman, Shaun Truelove, Bryan Patenaude, Lauren M Gardner, Nicholas Papageorge, Alison L Hill\",\"doi\":\"10.1371/journal.pcbi.1013549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human behavior plays a crucial role in infectious disease transmission, yet traditional models often overlook or oversimplify this factor, limiting predictions of disease spread and the associated socioeconomic impacts. Here we introduce a feedback-informed epidemiological model that integrates human behavior with disease dynamics in a credible, tractable, and extendable manner. From economics, we incorporate a dynamic decision-making model where individuals assess the trade-off between disease risks and economic consequences, and then link this to a risk-stratified compartmental model of disease spread taken from epidemiology. In the unified framework, heterogeneous individuals make choices based on current and future payoffs, influencing their risk of infection and shaping population-level disease dynamics. As an example, we model disease-decision feedback during the early months of the COVID-19 pandemic, when the decision to participate in paid, in-person work was a major determinant of disease risk. Comparing the impacts of stylized policy options representing mandatory, incentivized/compensated, and voluntary work abstention, we find that accounting for disease-behavior feedback has a significant impact on the relative health and economic impacts of policies. Including two crucial dimensions of heterogeneity-health and economic vulnerability-the results highlight how inequities between risk groups can be exacerbated or alleviated by disease control measures. Importantly, we show that a policy of more stringent workplace testing can potentially slow virus spread and, surprisingly, increase labor supply since individuals otherwise inclined to remain at home to avoid infection perceive a safer workplace. In short, our framework permits the exploration of avenues whereby health and wealth need not always be at odds. This flexible and extendable modeling framework offers a powerful tool for understanding the interplay between human behavior and disease spread.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 10\",\"pages\":\"e1013549\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510651/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013549\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013549","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Improving policy design and epidemic response using integrated models of economic choice and disease dynamics with behavioral feedback.
Human behavior plays a crucial role in infectious disease transmission, yet traditional models often overlook or oversimplify this factor, limiting predictions of disease spread and the associated socioeconomic impacts. Here we introduce a feedback-informed epidemiological model that integrates human behavior with disease dynamics in a credible, tractable, and extendable manner. From economics, we incorporate a dynamic decision-making model where individuals assess the trade-off between disease risks and economic consequences, and then link this to a risk-stratified compartmental model of disease spread taken from epidemiology. In the unified framework, heterogeneous individuals make choices based on current and future payoffs, influencing their risk of infection and shaping population-level disease dynamics. As an example, we model disease-decision feedback during the early months of the COVID-19 pandemic, when the decision to participate in paid, in-person work was a major determinant of disease risk. Comparing the impacts of stylized policy options representing mandatory, incentivized/compensated, and voluntary work abstention, we find that accounting for disease-behavior feedback has a significant impact on the relative health and economic impacts of policies. Including two crucial dimensions of heterogeneity-health and economic vulnerability-the results highlight how inequities between risk groups can be exacerbated or alleviated by disease control measures. Importantly, we show that a policy of more stringent workplace testing can potentially slow virus spread and, surprisingly, increase labor supply since individuals otherwise inclined to remain at home to avoid infection perceive a safer workplace. In short, our framework permits the exploration of avenues whereby health and wealth need not always be at odds. This flexible and extendable modeling framework offers a powerful tool for understanding the interplay between human behavior and disease spread.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.