Manfredi Castelli, Vítor Lopes-Dos-Santos, Giuseppe P Gava, Renaud Lambiotte, David Dupret
{"title":"海马体纹波多样性组织离线大脑中的神经元再激活动力学。","authors":"Manfredi Castelli, Vítor Lopes-Dos-Santos, Giuseppe P Gava, Renaud Lambiotte, David Dupret","doi":"10.1016/j.neuron.2025.09.012","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal ripples are highly synchronized neuronal population patterns reactivating past waking experiences in the offline brain. Whether the level, structure, and content of ripple-nested activity are consistent across consecutive events or are tuned in each event remains unclear. By profiling individual ripples using laminar currents in the mouse hippocampus during sleep/rest, we identified ripples in stratum pyramidale that feature current sinks in stratum radiatum (Rad<sup>sink</sup>) versus stratum lacunosum-moleculare (LM<sup>sink</sup>). These two ripple profiles recruit neurons differently. Rad<sup>sink</sup> ripples integrate recent motifs of waking coactivity, combining superficial and deep CA1 principal cells into denser, higher-dimensional patterns that undergo hour-long stable reactivation. By contrast, LM<sup>sink</sup> ripples contain core motifs of prior coactivity, engaging deep cells in sparser, lower-dimensional patterns that undergo a reactivation drift to gradually update their pre-existing content for recent wakefulness. We propose that ripple-by-ripple diversity supports parallel reactivation channels for integrating recent wakefulness while updating prior representations.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hippocampal ripple diversity organizes neuronal reactivation dynamics in the offline brain.\",\"authors\":\"Manfredi Castelli, Vítor Lopes-Dos-Santos, Giuseppe P Gava, Renaud Lambiotte, David Dupret\",\"doi\":\"10.1016/j.neuron.2025.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hippocampal ripples are highly synchronized neuronal population patterns reactivating past waking experiences in the offline brain. Whether the level, structure, and content of ripple-nested activity are consistent across consecutive events or are tuned in each event remains unclear. By profiling individual ripples using laminar currents in the mouse hippocampus during sleep/rest, we identified ripples in stratum pyramidale that feature current sinks in stratum radiatum (Rad<sup>sink</sup>) versus stratum lacunosum-moleculare (LM<sup>sink</sup>). These two ripple profiles recruit neurons differently. Rad<sup>sink</sup> ripples integrate recent motifs of waking coactivity, combining superficial and deep CA1 principal cells into denser, higher-dimensional patterns that undergo hour-long stable reactivation. By contrast, LM<sup>sink</sup> ripples contain core motifs of prior coactivity, engaging deep cells in sparser, lower-dimensional patterns that undergo a reactivation drift to gradually update their pre-existing content for recent wakefulness. We propose that ripple-by-ripple diversity supports parallel reactivation channels for integrating recent wakefulness while updating prior representations.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2025.09.012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2025.09.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Hippocampal ripple diversity organizes neuronal reactivation dynamics in the offline brain.
Hippocampal ripples are highly synchronized neuronal population patterns reactivating past waking experiences in the offline brain. Whether the level, structure, and content of ripple-nested activity are consistent across consecutive events or are tuned in each event remains unclear. By profiling individual ripples using laminar currents in the mouse hippocampus during sleep/rest, we identified ripples in stratum pyramidale that feature current sinks in stratum radiatum (Radsink) versus stratum lacunosum-moleculare (LMsink). These two ripple profiles recruit neurons differently. Radsink ripples integrate recent motifs of waking coactivity, combining superficial and deep CA1 principal cells into denser, higher-dimensional patterns that undergo hour-long stable reactivation. By contrast, LMsink ripples contain core motifs of prior coactivity, engaging deep cells in sparser, lower-dimensional patterns that undergo a reactivation drift to gradually update their pre-existing content for recent wakefulness. We propose that ripple-by-ripple diversity supports parallel reactivation channels for integrating recent wakefulness while updating prior representations.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.