基于加速度计的钢渣监测数据集。

IF 1.7 Q2 MULTIDISCIPLINARY SCIENCES
Mert Sehri, Lucas Mantuan Ayres, Francisco de Assis Boldt, Patrick Dumond, Marco Antonio de Souza Leite Cuadros
{"title":"基于加速度计的钢渣监测数据集。","authors":"Mert Sehri, Lucas Mantuan Ayres, Francisco de Assis Boldt, Patrick Dumond, Marco Antonio de Souza Leite Cuadros","doi":"10.1186/s13104-025-07486-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Slag detection in steel manufacturing is essential for ensuring high product quality and process efficiency. The purpose of the accelerometer-based data is to allow for accurate monitoring and differentiation between slag and molten metal flow. This is vital to prevent equipment damage, maintain steel quality, and enhance operational effectiveness. The data is collected specifically to support the development of machine learning models for real-time monitoring in the steel production process, addressing the critical need for precise slag detection.</p><p><strong>Data description: </strong>The Steel Slag Flow Dataset (SSFD) offers a comprehensive set of data obtained from a triaxial accelerometer during various stages of steel production. By leveraging this dataset, researchers can effectively analyze and classify the flow of slag versus molten metal. The dataset allows for data-driven approaches so that machine learning researchers can optimize steel manufacturing processes, ensuring high-quality steel production and minimizing the risks associated with slag contamination. The SSFD provides a valuable resource for researchers seeking to enhance predictive maintenance and monitoring in industrial applications.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"420"},"PeriodicalIF":1.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495644/pdf/","citationCount":"0","resultStr":"{\"title\":\"An accelerometer-based dataset for monitoring slag in steel manufacturing.\",\"authors\":\"Mert Sehri, Lucas Mantuan Ayres, Francisco de Assis Boldt, Patrick Dumond, Marco Antonio de Souza Leite Cuadros\",\"doi\":\"10.1186/s13104-025-07486-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Slag detection in steel manufacturing is essential for ensuring high product quality and process efficiency. The purpose of the accelerometer-based data is to allow for accurate monitoring and differentiation between slag and molten metal flow. This is vital to prevent equipment damage, maintain steel quality, and enhance operational effectiveness. The data is collected specifically to support the development of machine learning models for real-time monitoring in the steel production process, addressing the critical need for precise slag detection.</p><p><strong>Data description: </strong>The Steel Slag Flow Dataset (SSFD) offers a comprehensive set of data obtained from a triaxial accelerometer during various stages of steel production. By leveraging this dataset, researchers can effectively analyze and classify the flow of slag versus molten metal. The dataset allows for data-driven approaches so that machine learning researchers can optimize steel manufacturing processes, ensuring high-quality steel production and minimizing the risks associated with slag contamination. The SSFD provides a valuable resource for researchers seeking to enhance predictive maintenance and monitoring in industrial applications.</p>\",\"PeriodicalId\":9234,\"journal\":{\"name\":\"BMC Research Notes\",\"volume\":\"18 1\",\"pages\":\"420\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12495644/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Research Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13104-025-07486-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07486-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:钢渣检测是保证钢铁生产质量和生产效率的重要手段。基于加速度计的数据的目的是允许准确监测和区分渣和熔融金属流动。这对于防止设备损坏、保持钢材质量和提高操作效率至关重要。收集的数据专门用于支持机器学习模型的开发,以便在钢铁生产过程中进行实时监控,解决精确检测炉渣的关键需求。数据描述:钢渣流动数据集(SSFD)提供了一套全面的数据,这些数据是由三轴加速度计在钢铁生产的各个阶段获得的。通过利用这个数据集,研究人员可以有效地分析和分类炉渣与熔融金属的流动。该数据集允许数据驱动的方法,以便机器学习研究人员可以优化钢铁制造工艺,确保高质量的钢铁生产,并最大限度地降低与炉渣污染相关的风险。SSFD为寻求在工业应用中增强预测性维护和监测的研究人员提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An accelerometer-based dataset for monitoring slag in steel manufacturing.

Objectives: Slag detection in steel manufacturing is essential for ensuring high product quality and process efficiency. The purpose of the accelerometer-based data is to allow for accurate monitoring and differentiation between slag and molten metal flow. This is vital to prevent equipment damage, maintain steel quality, and enhance operational effectiveness. The data is collected specifically to support the development of machine learning models for real-time monitoring in the steel production process, addressing the critical need for precise slag detection.

Data description: The Steel Slag Flow Dataset (SSFD) offers a comprehensive set of data obtained from a triaxial accelerometer during various stages of steel production. By leveraging this dataset, researchers can effectively analyze and classify the flow of slag versus molten metal. The dataset allows for data-driven approaches so that machine learning researchers can optimize steel manufacturing processes, ensuring high-quality steel production and minimizing the risks associated with slag contamination. The SSFD provides a valuable resource for researchers seeking to enhance predictive maintenance and monitoring in industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Research Notes
BMC Research Notes Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍: BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信