Sandra Adámez-Rodríguez, Eric D Queathem, Abdirahman Hayir, María Luisa Marina, María Castro-Puyana, Patrycja Puchalska
{"title":"采用双标签UHPLC-MS/MS方法定量内源性和示踪衍生酮体。","authors":"Sandra Adámez-Rodríguez, Eric D Queathem, Abdirahman Hayir, María Luisa Marina, María Castro-Puyana, Patrycja Puchalska","doi":"10.1016/j.talanta.2025.128919","DOIUrl":null,"url":null,"abstract":"<p><p>Acetoacetate (AcAc) and β-hydroxybutyrate (βOHB) are ketone bodies involved in energy metabolism, particularly during physiological states of glucose scarcity, such as fasting, exercise, and the implementation of a ketogenic diet. The production (ketogenesis) and utilization (ketolysis) of ketone bodies are dynamic processes that can be quantified using stable isotope-labeled tracers in metabolic tracing studies, necessitating precise and sensitive analytical methods for accurately measuring both labeled and unlabeled pools. Although UHPLC-MS/MS has recently emerged as a reliable tool for quantifying ketone bodies, its dependence on <sup>13</sup>C-labeled internal standards limits its utility in <sup>13</sup>C-based tracer studies. AcAc, in particular, poses challenges due to its chemical instability and the scarcity of authentic, stable, isotopically labeled internal standards. While the chemical reduction of AcAc to βOHB provides a solution, this necessitates a cumbersome desalting step. To overcome these limitations, we developed a novel approach using deuterated AcAc (d<sub>3</sub>-AcAc) and [3,4,4,4-d<sub>4</sub>]βOHB as internal standards for the simultaneous quantification of <sup>13</sup>C-labeled and unlabeled ketone bodies in biological samples. We optimized the synthesis of AcAc from ethyl-AcAc via base-catalyzed hydrolysis, achieving 99.2 ± 0.2 % purity at 60 °C for 3 h, as confirmed by <sup>1</sup>H NMR. Stability assessments in the extraction buffer and post-extraction serum samples confirmed the robustness of newly synthesized d<sub>3</sub>-AcAc for at least 5 h. A comparative analysis against the labor-intensive conventional method demonstrated superior precision, accuracy, and ease of application, enabling high-throughput metabolic and clinical studies. The optimized UHPLC-MS/MS method substantially improves metabolic tracing capabilities, enabling rapid and accurate investigation of ketone body tracing studies across various physiological and pathological conditions.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"298 Pt A","pages":"128919"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying endogenous and tracer-derived ketone bodies using a dual-label UHPLC-MS/MS method.\",\"authors\":\"Sandra Adámez-Rodríguez, Eric D Queathem, Abdirahman Hayir, María Luisa Marina, María Castro-Puyana, Patrycja Puchalska\",\"doi\":\"10.1016/j.talanta.2025.128919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetoacetate (AcAc) and β-hydroxybutyrate (βOHB) are ketone bodies involved in energy metabolism, particularly during physiological states of glucose scarcity, such as fasting, exercise, and the implementation of a ketogenic diet. The production (ketogenesis) and utilization (ketolysis) of ketone bodies are dynamic processes that can be quantified using stable isotope-labeled tracers in metabolic tracing studies, necessitating precise and sensitive analytical methods for accurately measuring both labeled and unlabeled pools. Although UHPLC-MS/MS has recently emerged as a reliable tool for quantifying ketone bodies, its dependence on <sup>13</sup>C-labeled internal standards limits its utility in <sup>13</sup>C-based tracer studies. AcAc, in particular, poses challenges due to its chemical instability and the scarcity of authentic, stable, isotopically labeled internal standards. While the chemical reduction of AcAc to βOHB provides a solution, this necessitates a cumbersome desalting step. To overcome these limitations, we developed a novel approach using deuterated AcAc (d<sub>3</sub>-AcAc) and [3,4,4,4-d<sub>4</sub>]βOHB as internal standards for the simultaneous quantification of <sup>13</sup>C-labeled and unlabeled ketone bodies in biological samples. We optimized the synthesis of AcAc from ethyl-AcAc via base-catalyzed hydrolysis, achieving 99.2 ± 0.2 % purity at 60 °C for 3 h, as confirmed by <sup>1</sup>H NMR. Stability assessments in the extraction buffer and post-extraction serum samples confirmed the robustness of newly synthesized d<sub>3</sub>-AcAc for at least 5 h. A comparative analysis against the labor-intensive conventional method demonstrated superior precision, accuracy, and ease of application, enabling high-throughput metabolic and clinical studies. The optimized UHPLC-MS/MS method substantially improves metabolic tracing capabilities, enabling rapid and accurate investigation of ketone body tracing studies across various physiological and pathological conditions.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"298 Pt A\",\"pages\":\"128919\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2025.128919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.128919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Quantifying endogenous and tracer-derived ketone bodies using a dual-label UHPLC-MS/MS method.
Acetoacetate (AcAc) and β-hydroxybutyrate (βOHB) are ketone bodies involved in energy metabolism, particularly during physiological states of glucose scarcity, such as fasting, exercise, and the implementation of a ketogenic diet. The production (ketogenesis) and utilization (ketolysis) of ketone bodies are dynamic processes that can be quantified using stable isotope-labeled tracers in metabolic tracing studies, necessitating precise and sensitive analytical methods for accurately measuring both labeled and unlabeled pools. Although UHPLC-MS/MS has recently emerged as a reliable tool for quantifying ketone bodies, its dependence on 13C-labeled internal standards limits its utility in 13C-based tracer studies. AcAc, in particular, poses challenges due to its chemical instability and the scarcity of authentic, stable, isotopically labeled internal standards. While the chemical reduction of AcAc to βOHB provides a solution, this necessitates a cumbersome desalting step. To overcome these limitations, we developed a novel approach using deuterated AcAc (d3-AcAc) and [3,4,4,4-d4]βOHB as internal standards for the simultaneous quantification of 13C-labeled and unlabeled ketone bodies in biological samples. We optimized the synthesis of AcAc from ethyl-AcAc via base-catalyzed hydrolysis, achieving 99.2 ± 0.2 % purity at 60 °C for 3 h, as confirmed by 1H NMR. Stability assessments in the extraction buffer and post-extraction serum samples confirmed the robustness of newly synthesized d3-AcAc for at least 5 h. A comparative analysis against the labor-intensive conventional method demonstrated superior precision, accuracy, and ease of application, enabling high-throughput metabolic and clinical studies. The optimized UHPLC-MS/MS method substantially improves metabolic tracing capabilities, enabling rapid and accurate investigation of ketone body tracing studies across various physiological and pathological conditions.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.