将树的乘积嵌入到更高的秩中

IF 1.2 2区 数学 Q1 MATHEMATICS
Oussama Bensaid, Thang Nguyen
{"title":"将树的乘积嵌入到更高的秩中","authors":"Oussama Bensaid,&nbsp;Thang Nguyen","doi":"10.1112/jlms.70307","DOIUrl":null,"url":null,"abstract":"<p>We show that there exists a quasi-isometric embedding of the product of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> copies of <span></span><math>\n <semantics>\n <msubsup>\n <mi>H</mi>\n <mi>R</mi>\n <mn>2</mn>\n </msubsup>\n <annotation>$\\mathbb {H}_{\\mathbb {R}}^2$</annotation>\n </semantics></math> into any symmetric space of non-compact type of rank <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, and there exists a bi-Lipschitz embedding of the product of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> copies of the 3-regular tree <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n <annotation>$T_3$</annotation>\n </semantics></math> into any thick Euclidean building of rank <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> with co-compact affine Weyl group. This extends a previous result of Fisher–Whyte. The proof is purely geometrical, and the result also applies to the non–Bruhat–Tits buildings.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70307","citationCount":"0","resultStr":"{\"title\":\"Embedding products of trees into higher rank\",\"authors\":\"Oussama Bensaid,&nbsp;Thang Nguyen\",\"doi\":\"10.1112/jlms.70307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that there exists a quasi-isometric embedding of the product of <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> copies of <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>H</mi>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msubsup>\\n <annotation>$\\\\mathbb {H}_{\\\\mathbb {R}}^2$</annotation>\\n </semantics></math> into any symmetric space of non-compact type of rank <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, and there exists a bi-Lipschitz embedding of the product of <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> copies of the 3-regular tree <span></span><math>\\n <semantics>\\n <msub>\\n <mi>T</mi>\\n <mn>3</mn>\\n </msub>\\n <annotation>$T_3$</annotation>\\n </semantics></math> into any thick Euclidean building of rank <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> with co-compact affine Weyl group. This extends a previous result of Fisher–Whyte. The proof is purely geometrical, and the result also applies to the non–Bruhat–Tits buildings.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70307\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70307\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70307","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了H $ R $ 2$ \mathbb {H}_{\mathbb {R}}^2$的n$ n$拷贝的乘积在任何秩为n$ n$的非紧型对称空间中存在拟等距嵌入,3正则树T_3$ T_3$的n$个拷贝的乘积存在一个双lipschitz嵌入到任何具有协紧仿射Weyl群的n$ n$秩的厚欧几里得构造中。这扩展了fisher - white先前的结果。证明是纯粹几何的,结果也适用于非bruhat - tits建筑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Embedding products of trees into higher rank

Embedding products of trees into higher rank

We show that there exists a quasi-isometric embedding of the product of n $n$ copies of H R 2 $\mathbb {H}_{\mathbb {R}}^2$ into any symmetric space of non-compact type of rank n $n$ , and there exists a bi-Lipschitz embedding of the product of n $n$ copies of the 3-regular tree T 3 $T_3$ into any thick Euclidean building of rank n $n$ with co-compact affine Weyl group. This extends a previous result of Fisher–Whyte. The proof is purely geometrical, and the result also applies to the non–Bruhat–Tits buildings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信