多GPU稀疏矩阵的稀疏矩阵乘法

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Artem Mavliutov, Giovanni Isotton, Carlo Janna, Alessandro Celestini, Massimo Bernaschi
{"title":"多GPU稀疏矩阵的稀疏矩阵乘法","authors":"Artem Mavliutov,&nbsp;Giovanni Isotton,&nbsp;Carlo Janna,&nbsp;Alessandro Celestini,&nbsp;Massimo Bernaschi","doi":"10.1002/cpe.70313","DOIUrl":null,"url":null,"abstract":"<p>The paper focuses on the improvement of the existing <i>nsparse</i> Nagasaka et al. algorithm and its extension to the multi-GPU setting for the application of real engineering problems. In this work, we propose a distributed multi-GPU framework for <i>SpGEMM</i> that is designed specifically for the <i>nsparse</i> like algorithms. The results show ∼2 times speed-up for <i>nsparse</i> and close to ideal scalability of the multi-GPU extension with the number of GPUs. Finally, we test the proposed algorithm in the AMG setting by computing the double <i>SpGEMM</i> product.</p>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 25-26","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.70313","citationCount":"0","resultStr":"{\"title\":\"Multi GPU Sparse Matrix by Sparse Matrix Multiplication\",\"authors\":\"Artem Mavliutov,&nbsp;Giovanni Isotton,&nbsp;Carlo Janna,&nbsp;Alessandro Celestini,&nbsp;Massimo Bernaschi\",\"doi\":\"10.1002/cpe.70313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper focuses on the improvement of the existing <i>nsparse</i> Nagasaka et al. algorithm and its extension to the multi-GPU setting for the application of real engineering problems. In this work, we propose a distributed multi-GPU framework for <i>SpGEMM</i> that is designed specifically for the <i>nsparse</i> like algorithms. The results show ∼2 times speed-up for <i>nsparse</i> and close to ideal scalability of the multi-GPU extension with the number of GPUs. Finally, we test the proposed algorithm in the AMG setting by computing the double <i>SpGEMM</i> product.</p>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 25-26\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.70313\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70313\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70313","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文重点对现有的nsparse Nagasaka等算法进行改进,并将其扩展到多gpu设置,以便于实际工程问题的应用。在这项工作中,我们为SpGEMM提出了一个分布式多gpu框架,该框架是专门为n稀疏算法设计的。结果表明,nsparse的速度提高了2倍,并且随着gpu数量的增加,多gpu扩展接近理想的可扩展性。最后,我们通过计算双SpGEMM积来验证该算法在AMG设置下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi GPU Sparse Matrix by Sparse Matrix Multiplication

Multi GPU Sparse Matrix by Sparse Matrix Multiplication

The paper focuses on the improvement of the existing nsparse Nagasaka et al. algorithm and its extension to the multi-GPU setting for the application of real engineering problems. In this work, we propose a distributed multi-GPU framework for SpGEMM that is designed specifically for the nsparse like algorithms. The results show ∼2 times speed-up for nsparse and close to ideal scalability of the multi-GPU extension with the number of GPUs. Finally, we test the proposed algorithm in the AMG setting by computing the double SpGEMM product.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信