用Sp接收函数分析研究南极岩石圈

IF 3 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Sarah E. Brown, Karen M. Fischer
{"title":"用Sp接收函数分析研究南极岩石圈","authors":"Sarah E. Brown,&nbsp;Karen M. Fischer","doi":"10.1029/2025GC012268","DOIUrl":null,"url":null,"abstract":"<p>To better understand the lithosphere of Antarctica, we imaged its lithosphere-asthenosphere boundary (LAB) and crust-mantle transition using Sp receiver functions from teleseismic events analyzed at individual stations and with common conversion point stacking. Results reveal a prominent negative velocity gradient at depths of 70–100 km across much of West Antarctica, consistent with the seismically defined base of the lithosphere identified in prior tomography studies. Beneath the West Antarctic Rift System, lithospheric thicknesses are typically 70–85 km, with isolated zones up to 100 km. These thicknesses do not correlate with the time since significant extension. Rather, they are consistent with ablation of the cooling mantle at the base of the lithosphere caused by later processes, including ongoing asthenospheric flow. Mantle upwelling beneath Marie Byrd Land is one possible driver of asthenospheric flow and is consistent with this region's thin lithosphere, higher topography, and low upper mantle seismic velocities. Lithospheric thicknesses vary significantly along-strike beneath the Transantarctic Mountains, and these gradients in thermal structure indicate variable support for the mountains from a warm buoyant mantle. In the interior of East Antarctica, the absence of Sp phases from depths comparable to the base of the lithosphere seen in tomography suggests a more gradual LAB velocity gradient beneath the thick cratonic lithosphere. In contrast, beneath the margin of East Antarctica that rifted with Australia, clear LAB negative velocity gradients are present at depths of 90–120 km.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012268","citationCount":"0","resultStr":"{\"title\":\"Investigating the Antarctic Lithosphere Through Sp Receiver Function Analysis\",\"authors\":\"Sarah E. Brown,&nbsp;Karen M. Fischer\",\"doi\":\"10.1029/2025GC012268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To better understand the lithosphere of Antarctica, we imaged its lithosphere-asthenosphere boundary (LAB) and crust-mantle transition using Sp receiver functions from teleseismic events analyzed at individual stations and with common conversion point stacking. Results reveal a prominent negative velocity gradient at depths of 70–100 km across much of West Antarctica, consistent with the seismically defined base of the lithosphere identified in prior tomography studies. Beneath the West Antarctic Rift System, lithospheric thicknesses are typically 70–85 km, with isolated zones up to 100 km. These thicknesses do not correlate with the time since significant extension. Rather, they are consistent with ablation of the cooling mantle at the base of the lithosphere caused by later processes, including ongoing asthenospheric flow. Mantle upwelling beneath Marie Byrd Land is one possible driver of asthenospheric flow and is consistent with this region's thin lithosphere, higher topography, and low upper mantle seismic velocities. Lithospheric thicknesses vary significantly along-strike beneath the Transantarctic Mountains, and these gradients in thermal structure indicate variable support for the mountains from a warm buoyant mantle. In the interior of East Antarctica, the absence of Sp phases from depths comparable to the base of the lithosphere seen in tomography suggests a more gradual LAB velocity gradient beneath the thick cratonic lithosphere. In contrast, beneath the margin of East Antarctica that rifted with Australia, clear LAB negative velocity gradients are present at depths of 90–120 km.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012268\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012268\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012268","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地了解南极岩石圈,利用各台站远震事件的Sp接收函数和共同转换点叠加,对岩石圈-软流圈边界(LAB)和壳幔转换进行了成像。结果显示,在南极洲西部的大部分地区,在70-100公里深处有一个显著的负速度梯度,这与之前断层扫描研究中确定的岩石圈地震定义的基底一致。在南极西部裂谷系统之下,岩石圈的厚度通常为70-85公里,孤立地带的厚度可达100公里。这些厚度与显著延伸后的时间无关。相反,它们与岩石圈底部冷却地幔的消融是一致的,这是由后期过程引起的,包括持续的软流圈流。玛丽伯德地下面的地幔上涌是软流圈流动的一个可能驱动因素,与该地区的薄岩石圈、较高的地形和较低的上地幔地震速度相一致。横贯南极山脉下岩石圈厚度沿走向变化明显,这些热结构的梯度表明温暖浮力地幔对山脉的支持是可变的。在东南极洲内部,层析成像中与岩石圈底部相当的深度没有Sp相,这表明在厚的克拉通岩石圈下,LAB速度梯度更平缓。相比之下,在与澳大利亚裂陷的东南极洲边缘下,在90-120公里深处存在明显的LAB负速度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigating the Antarctic Lithosphere Through Sp Receiver Function Analysis

Investigating the Antarctic Lithosphere Through Sp Receiver Function Analysis

To better understand the lithosphere of Antarctica, we imaged its lithosphere-asthenosphere boundary (LAB) and crust-mantle transition using Sp receiver functions from teleseismic events analyzed at individual stations and with common conversion point stacking. Results reveal a prominent negative velocity gradient at depths of 70–100 km across much of West Antarctica, consistent with the seismically defined base of the lithosphere identified in prior tomography studies. Beneath the West Antarctic Rift System, lithospheric thicknesses are typically 70–85 km, with isolated zones up to 100 km. These thicknesses do not correlate with the time since significant extension. Rather, they are consistent with ablation of the cooling mantle at the base of the lithosphere caused by later processes, including ongoing asthenospheric flow. Mantle upwelling beneath Marie Byrd Land is one possible driver of asthenospheric flow and is consistent with this region's thin lithosphere, higher topography, and low upper mantle seismic velocities. Lithospheric thicknesses vary significantly along-strike beneath the Transantarctic Mountains, and these gradients in thermal structure indicate variable support for the mountains from a warm buoyant mantle. In the interior of East Antarctica, the absence of Sp phases from depths comparable to the base of the lithosphere seen in tomography suggests a more gradual LAB velocity gradient beneath the thick cratonic lithosphere. In contrast, beneath the margin of East Antarctica that rifted with Australia, clear LAB negative velocity gradients are present at depths of 90–120 km.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信