上覆板块和地幔黏性结构对深部板块形态的影响

IF 3 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Antoniette Greta Grima, Carolina Lithgow-Bertelloni, Fabio Crameri
{"title":"上覆板块和地幔黏性结构对深部板块形态的影响","authors":"Antoniette Greta Grima,&nbsp;Carolina Lithgow-Bertelloni,&nbsp;Fabio Crameri","doi":"10.1029/2025GC012593","DOIUrl":null,"url":null,"abstract":"<p>Using 2D numerical subduction models, we compare the morphology of deep slabs in the presence of an oceanic or continental overriding plate and viscosity jumps at either 660 km or 1,000 km depth as suggested by the latest geoid inversions. We demonstrate that a continental plate, combined with a 1,000 km depth viscosity increase, promotes slab penetration into the lower mantle. The same slab will deflect at 660 km depth if it subducts under an oceanic plate into a mantle where the viscosity increases at 660 km depth. To quantify these dynamics, we introduce a slab-bending ratio, dividing the angle of the deepest tip of the slab (slab tip angle) by its dip angle below the plate interface (shallow slab angle), reflecting the overall steepness, and sinking history of the slab. Ocean-ocean convergence models with a viscosity increase coincident with the phase transition at 660 km depth have low ratios and flattened slabs comparable to ocean-ocean cases in nature (e.g., Izu-Bonin). Coupling a continental overriding plate with a 1,000 km depth viscosity increase separate from the endothermic phase change results in slabs with high ratio values, and stepped morphologies similar to those observed for the Nazca plate beneath Southern Peru. Our results highlight that slab morphologies ultimately express the interaction between the type of overriding plate, slab-induced flow, and phase transitions, modulated by the viscosity structure of the top of the lower mantle and transition zone, complementing studies of slab folding, buckling, and other deformation in the upper mantle.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012593","citationCount":"0","resultStr":"{\"title\":\"The Role of the Overriding Plate and Mantle Viscosity Structure on Deep Slab Morphology\",\"authors\":\"Antoniette Greta Grima,&nbsp;Carolina Lithgow-Bertelloni,&nbsp;Fabio Crameri\",\"doi\":\"10.1029/2025GC012593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using 2D numerical subduction models, we compare the morphology of deep slabs in the presence of an oceanic or continental overriding plate and viscosity jumps at either 660 km or 1,000 km depth as suggested by the latest geoid inversions. We demonstrate that a continental plate, combined with a 1,000 km depth viscosity increase, promotes slab penetration into the lower mantle. The same slab will deflect at 660 km depth if it subducts under an oceanic plate into a mantle where the viscosity increases at 660 km depth. To quantify these dynamics, we introduce a slab-bending ratio, dividing the angle of the deepest tip of the slab (slab tip angle) by its dip angle below the plate interface (shallow slab angle), reflecting the overall steepness, and sinking history of the slab. Ocean-ocean convergence models with a viscosity increase coincident with the phase transition at 660 km depth have low ratios and flattened slabs comparable to ocean-ocean cases in nature (e.g., Izu-Bonin). Coupling a continental overriding plate with a 1,000 km depth viscosity increase separate from the endothermic phase change results in slabs with high ratio values, and stepped morphologies similar to those observed for the Nazca plate beneath Southern Peru. Our results highlight that slab morphologies ultimately express the interaction between the type of overriding plate, slab-induced flow, and phase transitions, modulated by the viscosity structure of the top of the lower mantle and transition zone, complementing studies of slab folding, buckling, and other deformation in the upper mantle.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 10\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012593\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012593\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012593","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用二维数值俯冲模型,我们比较了在海洋或大陆上覆板块存在的情况下深部板块的形态,以及最新大地水准面反演显示的660公里或1000公里深度的粘度跳变。我们证明,大陆板块与1,000公里深度的粘度增加相结合,促进了板块向下地幔的渗透。同样的板块如果在海洋板块之下俯冲到660公里深处的地幔中,那么它将在660公里深处发生偏转,而地幔的粘度在660公里深处增加。为了量化这些动态,我们引入了一个板弯比,将板的最深尖端的角度(板尖角)除以板界面以下的倾角(浅板角),反映了板的整体陡峭度和下沉历史。与660公里深度的相变相一致的黏度增加的海洋-海洋辐合模式具有低比率和扁平板块,可与自然界的海洋-海洋案例(例如伊豆-波宁)相比较。将大陆上覆板块与1,000公里深度粘度增加分离开来的吸热相变相结合,形成了具有高比值值的板块,并形成了与秘鲁南部纳斯卡板块相似的阶梯形态。我们的研究结果强调,板块形态最终表达了覆岩板块类型、板块诱导流动和相变之间的相互作用,由下地幔顶部和过渡带的黏性结构调节,补充了上地幔板块褶皱、屈曲和其他变形的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Role of the Overriding Plate and Mantle Viscosity Structure on Deep Slab Morphology

The Role of the Overriding Plate and Mantle Viscosity Structure on Deep Slab Morphology

Using 2D numerical subduction models, we compare the morphology of deep slabs in the presence of an oceanic or continental overriding plate and viscosity jumps at either 660 km or 1,000 km depth as suggested by the latest geoid inversions. We demonstrate that a continental plate, combined with a 1,000 km depth viscosity increase, promotes slab penetration into the lower mantle. The same slab will deflect at 660 km depth if it subducts under an oceanic plate into a mantle where the viscosity increases at 660 km depth. To quantify these dynamics, we introduce a slab-bending ratio, dividing the angle of the deepest tip of the slab (slab tip angle) by its dip angle below the plate interface (shallow slab angle), reflecting the overall steepness, and sinking history of the slab. Ocean-ocean convergence models with a viscosity increase coincident with the phase transition at 660 km depth have low ratios and flattened slabs comparable to ocean-ocean cases in nature (e.g., Izu-Bonin). Coupling a continental overriding plate with a 1,000 km depth viscosity increase separate from the endothermic phase change results in slabs with high ratio values, and stepped morphologies similar to those observed for the Nazca plate beneath Southern Peru. Our results highlight that slab morphologies ultimately express the interaction between the type of overriding plate, slab-induced flow, and phase transitions, modulated by the viscosity structure of the top of the lower mantle and transition zone, complementing studies of slab folding, buckling, and other deformation in the upper mantle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信