Heather H. Kim, Shun Mao, Kevin M. Archibald, Jens Terhaar, Rhegan M. Thomason
{"title":"细菌对百慕大附近马尾藻海代谢平衡的控制:来自数据同化生物地球化学模型的见解","authors":"Heather H. Kim, Shun Mao, Kevin M. Archibald, Jens Terhaar, Rhegan M. Thomason","doi":"10.1029/2025JG008919","DOIUrl":null,"url":null,"abstract":"<p>Heterotrophic marine bacteria are key players in the ocean carbon cycle. However, their exact contributions to net community production (NCP)—a crucial metric for the biological pump that indicates the metabolic balance and sets the upper limit for carbon export—remain unquantified due to limited bacterial integration in ocean biogeochemical models. In this study, we addressed this knowledge gap and quantified the role of bacterial dynamics in controlling total heterotrophic respiration (HR) and NCP at the Bermuda Atlantic Time-series Study (BATS) site. To do this, we developed and employed a one-dimensional data-assimilative ocean biogeochemical model. Our results demonstrated that bacteria contributed 88% of HR, playing a dominant role in regulating NCP through respiration rates comparable to net primary production (NPP). Under future climate conditions, annual NCP remained stable in the upper ocean due to offsetting increases in bacterial respiration (BR) and NPP. However, distinct seasonal and vertical patterns emerged that intensified with the severity of climate change: increased NCP in winter and early spring surface waters, decreased NCP in late spring and at depth during mixing periods, and less pronounced increases during summer-fall stratification. The increased BR rates resulted from complex interactions between temperature-enhanced metabolic rates and adaptive substrate utilization, where bacteria maintained their metabolism despite increased labile organic matter limitation by utilizing a semi-labile pool. Our results highlight bacteria's critical influence on upper ocean carbon cycling, providing key insights into their biogeochemical role under climate change.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 10","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JG008919","citationCount":"0","resultStr":"{\"title\":\"Bacterial Control of Metabolic Balance in the Sargasso Sea Near Bermuda: Insights From Data-Assimilative Biogeochemical Modeling\",\"authors\":\"Heather H. Kim, Shun Mao, Kevin M. Archibald, Jens Terhaar, Rhegan M. Thomason\",\"doi\":\"10.1029/2025JG008919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heterotrophic marine bacteria are key players in the ocean carbon cycle. However, their exact contributions to net community production (NCP)—a crucial metric for the biological pump that indicates the metabolic balance and sets the upper limit for carbon export—remain unquantified due to limited bacterial integration in ocean biogeochemical models. In this study, we addressed this knowledge gap and quantified the role of bacterial dynamics in controlling total heterotrophic respiration (HR) and NCP at the Bermuda Atlantic Time-series Study (BATS) site. To do this, we developed and employed a one-dimensional data-assimilative ocean biogeochemical model. Our results demonstrated that bacteria contributed 88% of HR, playing a dominant role in regulating NCP through respiration rates comparable to net primary production (NPP). Under future climate conditions, annual NCP remained stable in the upper ocean due to offsetting increases in bacterial respiration (BR) and NPP. However, distinct seasonal and vertical patterns emerged that intensified with the severity of climate change: increased NCP in winter and early spring surface waters, decreased NCP in late spring and at depth during mixing periods, and less pronounced increases during summer-fall stratification. The increased BR rates resulted from complex interactions between temperature-enhanced metabolic rates and adaptive substrate utilization, where bacteria maintained their metabolism despite increased labile organic matter limitation by utilizing a semi-labile pool. Our results highlight bacteria's critical influence on upper ocean carbon cycling, providing key insights into their biogeochemical role under climate change.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JG008919\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JG008919\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JG008919","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Bacterial Control of Metabolic Balance in the Sargasso Sea Near Bermuda: Insights From Data-Assimilative Biogeochemical Modeling
Heterotrophic marine bacteria are key players in the ocean carbon cycle. However, their exact contributions to net community production (NCP)—a crucial metric for the biological pump that indicates the metabolic balance and sets the upper limit for carbon export—remain unquantified due to limited bacterial integration in ocean biogeochemical models. In this study, we addressed this knowledge gap and quantified the role of bacterial dynamics in controlling total heterotrophic respiration (HR) and NCP at the Bermuda Atlantic Time-series Study (BATS) site. To do this, we developed and employed a one-dimensional data-assimilative ocean biogeochemical model. Our results demonstrated that bacteria contributed 88% of HR, playing a dominant role in regulating NCP through respiration rates comparable to net primary production (NPP). Under future climate conditions, annual NCP remained stable in the upper ocean due to offsetting increases in bacterial respiration (BR) and NPP. However, distinct seasonal and vertical patterns emerged that intensified with the severity of climate change: increased NCP in winter and early spring surface waters, decreased NCP in late spring and at depth during mixing periods, and less pronounced increases during summer-fall stratification. The increased BR rates resulted from complex interactions between temperature-enhanced metabolic rates and adaptive substrate utilization, where bacteria maintained their metabolism despite increased labile organic matter limitation by utilizing a semi-labile pool. Our results highlight bacteria's critical influence on upper ocean carbon cycling, providing key insights into their biogeochemical role under climate change.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology