Xabier Davila, Elaine L. McDonagh, Fatma Jebri, Geoffrey Gebbie, Michael P. Meredith
{"title":"通过盐度-δ18O关系的全球海洋淡水资源:一个水质量问题的机器学习解决方案","authors":"Xabier Davila, Elaine L. McDonagh, Fatma Jebri, Geoffrey Gebbie, Michael P. Meredith","doi":"10.1029/2024JC022122","DOIUrl":null,"url":null,"abstract":"<p>Changes in the hydrological cycle can affect ocean circulation and ventilation. Freshwater enters the ocean as meteoric water (MW; precipitation, river runoff, and glacial discharge) and sea ice meltwater (SIM). These inputs are traced using seawater salinity and stable oxygen isotopes in seawater, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\delta }^{18}\\mathrm{O}$</annotation>\n </semantics></math>. We apply a self-organizing map, a machine learning technique, to water mass properties to estimate the global distribution of the isotopic signature of MW <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <msub>\n <mi>O</mi>\n <mrow>\n <mi>M</mi>\n <mi>W</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\delta }^{18}{\\mathrm{O}}_{MW}\\right)$</annotation>\n </semantics></math> by characterizing distinct salinity-<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\delta }^{18}\\mathrm{O}$</annotation>\n </semantics></math> relationships from two comprehensive data sets. The inferred <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <msub>\n <mi>O</mi>\n <mrow>\n <mi>M</mi>\n <mi>W</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\delta }^{18}{\\mathrm{O}}_{MW}$</annotation>\n </semantics></math> is then used in a three-endmember mixing model to provide a globally coherent MW and SIM contributions to the extratropical ocean freshwater budget. Through the use of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\delta }^{18}\\mathrm{O}$</annotation>\n </semantics></math>, our results show the role of MW and SIM in dense water formation and the resulting interhemispheric asymmetry in the freshwater sources that fill the interior ocean freshwater budget. Trends drawn in <span></span><math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <annotation> $\\theta $</annotation>\n </semantics></math>-S space show a significant decrease in sea ice formation driving the freshening of Antarctic bottom water for the 1980–2023 period, whereas SIM is significantly increasing in parts of the Arctic halocline. The different roles of sea ice in dense water formation has implications for future ocean circulation under climate change, where machine learning techniques applied to <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n <mi>O</mi>\n </mrow>\n <annotation> ${\\delta }^{18}\\mathrm{O}$</annotation>\n </semantics></math> have been proven to have utility in detecting such changes.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022122","citationCount":"0","resultStr":"{\"title\":\"Freshwater Sources in the Global Ocean Through Salinity-δ18O Relationships: A Machine Learning Solution to a Water Mass Problem\",\"authors\":\"Xabier Davila, Elaine L. McDonagh, Fatma Jebri, Geoffrey Gebbie, Michael P. Meredith\",\"doi\":\"10.1029/2024JC022122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes in the hydrological cycle can affect ocean circulation and ventilation. Freshwater enters the ocean as meteoric water (MW; precipitation, river runoff, and glacial discharge) and sea ice meltwater (SIM). These inputs are traced using seawater salinity and stable oxygen isotopes in seawater, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}\\\\mathrm{O}$</annotation>\\n </semantics></math>. We apply a self-organizing map, a machine learning technique, to water mass properties to estimate the global distribution of the isotopic signature of MW <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mi>M</mi>\\n <mi>W</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({\\\\delta }^{18}{\\\\mathrm{O}}_{MW}\\\\right)$</annotation>\\n </semantics></math> by characterizing distinct salinity-<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}\\\\mathrm{O}$</annotation>\\n </semantics></math> relationships from two comprehensive data sets. The inferred <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <msub>\\n <mi>O</mi>\\n <mrow>\\n <mi>M</mi>\\n <mi>W</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}{\\\\mathrm{O}}_{MW}$</annotation>\\n </semantics></math> is then used in a three-endmember mixing model to provide a globally coherent MW and SIM contributions to the extratropical ocean freshwater budget. Through the use of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}\\\\mathrm{O}$</annotation>\\n </semantics></math>, our results show the role of MW and SIM in dense water formation and the resulting interhemispheric asymmetry in the freshwater sources that fill the interior ocean freshwater budget. Trends drawn in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <annotation> $\\\\theta $</annotation>\\n </semantics></math>-S space show a significant decrease in sea ice formation driving the freshening of Antarctic bottom water for the 1980–2023 period, whereas SIM is significantly increasing in parts of the Arctic halocline. The different roles of sea ice in dense water formation has implications for future ocean circulation under climate change, where machine learning techniques applied to <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n <mi>O</mi>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}\\\\mathrm{O}$</annotation>\\n </semantics></math> have been proven to have utility in detecting such changes.</p>\",\"PeriodicalId\":54340,\"journal\":{\"name\":\"Journal of Geophysical Research-Oceans\",\"volume\":\"130 10\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC022122\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research-Oceans\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JC022122\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JC022122","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
摘要
水文循环的变化会影响海洋环流和通风。淡水以大气水(MW、降水、河流径流和冰川排放)和海冰融水(SIM)的形式进入海洋。利用海水盐度和海水中的稳定氧同位素δ 18o ${\delta }^{18}\mathrm{O}$来追踪这些输入。我们应用自组织地图,一种机器学习技术,,以估计MW δ 18o MW同位素特征的全球分布$\left({\delta }^{18}{\mathrm{O}}_{MW}\right)$通过表征两个综合数据集的不同盐度- δ 18o ${\delta }^{18}\mathrm{O}$关系。推断的δ 18 O MW ${\delta }^{18}{\mathrm{O}}_{MW}$然后用于三端元混合模型,以提供全局相干的MW和SIM贡献温带海洋淡水收支。通过δ 18 O ${\delta }^{18}\mathrm{O}$,我们的研究结果表明,在填充海洋内部淡水收支的淡水源中,MW和SIM在致密水形成中的作用以及由此产生的半球间不对称。θ $\theta $ -S空间的趋势显示,1980-2023年期间,海冰形成的显著减少推动了南极底水的变新鲜,而北极部分盐斜区的SIM则显著增加。海冰在致密水形成中的不同作用对气候变化下未来的海洋环流有影响,其中应用于δ 18 O ${\delta }^{18}\mathrm{O}$的机器学习技术已被证明在检测此类变化方面具有实用价值。
Freshwater Sources in the Global Ocean Through Salinity-δ18O Relationships: A Machine Learning Solution to a Water Mass Problem
Changes in the hydrological cycle can affect ocean circulation and ventilation. Freshwater enters the ocean as meteoric water (MW; precipitation, river runoff, and glacial discharge) and sea ice meltwater (SIM). These inputs are traced using seawater salinity and stable oxygen isotopes in seawater, . We apply a self-organizing map, a machine learning technique, to water mass properties to estimate the global distribution of the isotopic signature of MW by characterizing distinct salinity- relationships from two comprehensive data sets. The inferred is then used in a three-endmember mixing model to provide a globally coherent MW and SIM contributions to the extratropical ocean freshwater budget. Through the use of , our results show the role of MW and SIM in dense water formation and the resulting interhemispheric asymmetry in the freshwater sources that fill the interior ocean freshwater budget. Trends drawn in -S space show a significant decrease in sea ice formation driving the freshening of Antarctic bottom water for the 1980–2023 period, whereas SIM is significantly increasing in parts of the Arctic halocline. The different roles of sea ice in dense water formation has implications for future ocean circulation under climate change, where machine learning techniques applied to have been proven to have utility in detecting such changes.