日本2024年首次结节性皮肤病暴发的描述性流行病学分析

IF 3 2区 农林科学 Q2 INFECTIOUS DISEASES
Yoko Hayama, Ryosuke Omori, Ryota Matsuyama, Sonoko Kondo, Emi Yamaguchi, Yuzu Kamata, Takehisa Yamamoto
{"title":"日本2024年首次结节性皮肤病暴发的描述性流行病学分析","authors":"Yoko Hayama,&nbsp;Ryosuke Omori,&nbsp;Ryota Matsuyama,&nbsp;Sonoko Kondo,&nbsp;Emi Yamaguchi,&nbsp;Yuzu Kamata,&nbsp;Takehisa Yamamoto","doi":"10.1155/tbed/8488125","DOIUrl":null,"url":null,"abstract":"<p>Lumpy skin disease (LSD) is a transboundary emerging disease of cattle and water buffaloes that threatens the livestock industry globally. Japan experienced its first outbreak in November 2024. This study aimed to describe the spatial and temporal characteristics of this outbreak and estimate the transmissibility using a mathematical model for within-farm transmission. The first and second cases were confirmed on dairy farms in Itoshima City, Fukuoka Prefecture, southern Japan, on November 6, 2024. Twenty-two farms were confirmed during this outbreak, with 17 cases in Itoshima City and the other two municipalities in Fukuoka Prefecture. The third case occurred in Kumamoto Prefecture on November 8, 2024, and was linked to the long-distance movement of potentially infected cattle via the livestock market from the first case on October 18, 2024. Two additional cases were detected near the third case. Control measures included isolation and voluntary culling of infected cattle; voluntary movement restrictions on infected, suspected, and apparently healthy cattle on the same premises; and voluntary suspension of the raw milk and semen shipments from infected and suspected animals. These measures were voluntary; however, no violations were reported. Vector control was achieved with insecticides and insect-proof netting. Voluntary vaccination was conducted within a 20 km radius of affected farms in Fukuoka Prefecture. Mathematical modeling of within-farm transmission dynamics revealed a transmission rate of 0.0031 (95% CI: 0.002–0.0044) per day. The basic reproduction number was 3.51 (95% CI: 2.26–4.98) based on a herd size of 49 and an infectious period of 23.1 days. Although the outbreak was geographically limited, this study highlights key epidemiological features of LSD, including its high transmission rate and long-distance transmission via cattle movement. Japan has a persisting LSD virus (LSDV)incursion risk due to recent outbreaks in Asia. Strengthening preparedness, including awareness among farmers and veterinarians, emergency vaccination plans, vector control, traceability, and quarantine protocols for cattle movement, is essential to mitigate future outbreaks.</p>","PeriodicalId":234,"journal":{"name":"Transboundary and Emerging Diseases","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/8488125","citationCount":"0","resultStr":"{\"title\":\"Descriptive Epidemiological Analysis for the First Outbreak of Lumpy Skin Disease in Japan in 2024\",\"authors\":\"Yoko Hayama,&nbsp;Ryosuke Omori,&nbsp;Ryota Matsuyama,&nbsp;Sonoko Kondo,&nbsp;Emi Yamaguchi,&nbsp;Yuzu Kamata,&nbsp;Takehisa Yamamoto\",\"doi\":\"10.1155/tbed/8488125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lumpy skin disease (LSD) is a transboundary emerging disease of cattle and water buffaloes that threatens the livestock industry globally. Japan experienced its first outbreak in November 2024. This study aimed to describe the spatial and temporal characteristics of this outbreak and estimate the transmissibility using a mathematical model for within-farm transmission. The first and second cases were confirmed on dairy farms in Itoshima City, Fukuoka Prefecture, southern Japan, on November 6, 2024. Twenty-two farms were confirmed during this outbreak, with 17 cases in Itoshima City and the other two municipalities in Fukuoka Prefecture. The third case occurred in Kumamoto Prefecture on November 8, 2024, and was linked to the long-distance movement of potentially infected cattle via the livestock market from the first case on October 18, 2024. Two additional cases were detected near the third case. Control measures included isolation and voluntary culling of infected cattle; voluntary movement restrictions on infected, suspected, and apparently healthy cattle on the same premises; and voluntary suspension of the raw milk and semen shipments from infected and suspected animals. These measures were voluntary; however, no violations were reported. Vector control was achieved with insecticides and insect-proof netting. Voluntary vaccination was conducted within a 20 km radius of affected farms in Fukuoka Prefecture. Mathematical modeling of within-farm transmission dynamics revealed a transmission rate of 0.0031 (95% CI: 0.002–0.0044) per day. The basic reproduction number was 3.51 (95% CI: 2.26–4.98) based on a herd size of 49 and an infectious period of 23.1 days. Although the outbreak was geographically limited, this study highlights key epidemiological features of LSD, including its high transmission rate and long-distance transmission via cattle movement. Japan has a persisting LSD virus (LSDV)incursion risk due to recent outbreaks in Asia. Strengthening preparedness, including awareness among farmers and veterinarians, emergency vaccination plans, vector control, traceability, and quarantine protocols for cattle movement, is essential to mitigate future outbreaks.</p>\",\"PeriodicalId\":234,\"journal\":{\"name\":\"Transboundary and Emerging Diseases\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/tbed/8488125\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transboundary and Emerging Diseases\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/tbed/8488125\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transboundary and Emerging Diseases","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/tbed/8488125","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

肿块性皮肤病(LSD)是牛和水牛的一种跨界新发疾病,威胁着全球畜牧业。日本于2024年11月首次爆发疫情。本研究旨在描述此次暴发的时空特征,并利用农场内传播的数学模型估计其传播力。第一例和第二例于2024年11月6日在日本南部福冈县伊德岛市的奶牛场确诊。这次暴发期间确认了22个农场,其中17例发生在伊德岛市和福冈县的另外两个市。第三例病例于2024年11月8日在熊本县发生,与2024年10月18日第一例病例以来通过牲畜市场进行的可能感染的牛的长距离移动有关。在第三例病例附近又发现了两例。控制措施包括隔离和自愿扑杀受感染的牛;对同一场所内受感染、疑似和显然健康的牛实行自愿行动限制;并自愿停止从受感染和疑似动物运送原料奶和精液。这些措施是自愿的;但是,没有违反规定的报告。通过杀虫剂和防虫网实现了病媒控制。在福冈县受影响农场半径20公里范围内进行了自愿接种。农场内传播动态的数学模型显示,每天的传播率为0.0031 (95% CI: 0.002-0.0044)。在畜群规模为49只,感染期为23.1天的基础上,基本繁殖数为3.51 (95% CI: 2.26-4.98)。虽然疫情在地理上是有限的,但本研究强调了LSD的主要流行病学特征,包括其高传播率和通过牛的长距离传播。由于最近在亚洲爆发的LSDV,日本存在持续的LSDV入侵风险。加强防范,包括农民和兽医的意识、紧急疫苗接种计划、病媒控制、可追溯性和牛的检疫规程,对于减轻未来的疫情至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Descriptive Epidemiological Analysis for the First Outbreak of Lumpy Skin Disease in Japan in 2024

Descriptive Epidemiological Analysis for the First Outbreak of Lumpy Skin Disease in Japan in 2024

Lumpy skin disease (LSD) is a transboundary emerging disease of cattle and water buffaloes that threatens the livestock industry globally. Japan experienced its first outbreak in November 2024. This study aimed to describe the spatial and temporal characteristics of this outbreak and estimate the transmissibility using a mathematical model for within-farm transmission. The first and second cases were confirmed on dairy farms in Itoshima City, Fukuoka Prefecture, southern Japan, on November 6, 2024. Twenty-two farms were confirmed during this outbreak, with 17 cases in Itoshima City and the other two municipalities in Fukuoka Prefecture. The third case occurred in Kumamoto Prefecture on November 8, 2024, and was linked to the long-distance movement of potentially infected cattle via the livestock market from the first case on October 18, 2024. Two additional cases were detected near the third case. Control measures included isolation and voluntary culling of infected cattle; voluntary movement restrictions on infected, suspected, and apparently healthy cattle on the same premises; and voluntary suspension of the raw milk and semen shipments from infected and suspected animals. These measures were voluntary; however, no violations were reported. Vector control was achieved with insecticides and insect-proof netting. Voluntary vaccination was conducted within a 20 km radius of affected farms in Fukuoka Prefecture. Mathematical modeling of within-farm transmission dynamics revealed a transmission rate of 0.0031 (95% CI: 0.002–0.0044) per day. The basic reproduction number was 3.51 (95% CI: 2.26–4.98) based on a herd size of 49 and an infectious period of 23.1 days. Although the outbreak was geographically limited, this study highlights key epidemiological features of LSD, including its high transmission rate and long-distance transmission via cattle movement. Japan has a persisting LSD virus (LSDV)incursion risk due to recent outbreaks in Asia. Strengthening preparedness, including awareness among farmers and veterinarians, emergency vaccination plans, vector control, traceability, and quarantine protocols for cattle movement, is essential to mitigate future outbreaks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transboundary and Emerging Diseases
Transboundary and Emerging Diseases 农林科学-传染病学
CiteScore
8.90
自引率
9.30%
发文量
350
审稿时长
1 months
期刊介绍: Transboundary and Emerging Diseases brings together in one place the latest research on infectious diseases considered to hold the greatest economic threat to animals and humans worldwide. The journal provides a venue for global research on their diagnosis, prevention and management, and for papers on public health, pathogenesis, epidemiology, statistical modeling, diagnostics, biosecurity issues, genomics, vaccine development and rapid communication of new outbreaks. Papers should include timely research approaches using state-of-the-art technologies. The editors encourage papers adopting a science-based approach on socio-economic and environmental factors influencing the management of the bio-security threat posed by these diseases, including risk analysis and disease spread modeling. Preference will be given to communications focusing on novel science-based approaches to controlling transboundary and emerging diseases. The following topics are generally considered out-of-scope, but decisions are made on a case-by-case basis (for example, studies on cryptic wildlife populations, and those on potential species extinctions): Pathogen discovery: a common pathogen newly recognised in a specific country, or a new pathogen or genetic sequence for which there is little context about — or insights regarding — its emergence or spread. Prevalence estimation surveys and risk factor studies based on survey (rather than longitudinal) methodology, except when such studies are unique. Surveys of knowledge, attitudes and practices are within scope. Diagnostic test development if not accompanied by robust sensitivity and specificity estimation from field studies. Studies focused only on laboratory methods in which relevance to disease emergence and spread is not obvious or can not be inferred (“pure research” type studies). Narrative literature reviews which do not generate new knowledge. Systematic and scoping reviews, and meta-analyses are within scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信