精灵多环的准常数时间间隔

IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
The Pierre Auger Collaboration
{"title":"精灵多环的准常数时间间隔","authors":"The Pierre Auger Collaboration","doi":"10.1029/2025EA004321","DOIUrl":null,"url":null,"abstract":"<p>We present evidence that the time delay between the multiple rings of elves is not caused by the ground reflection of the electromagnetic pulse produced by intracloud lightning. To investigate temporal differences of multi-elves, we analyzed data from four storms occurring at various times and distances from the Pierre Auger Observatory in Malargüe, Argentina. The Auger fluorescence detector's high temporal resolution of 100 ns enabled the frequent observation of multi-elves, accounting for approximately 23% of the events. By examining the traces of 70 double and 24 triple elves, we demonstrate that the time delay between the rings remains relatively constant regardless of the arc distance to the lightning. These results deviate from the trend expected from the electromagnetic pulse (EMP) ground reflection model, which predicts a decreasing time delay with increasing arc distance from an intracloud lightning at a given height. The first emission ring is due to a direct path of the EMP to the ionosphere, with the reflected EMP creating the second ring. Simulations conducted with this model demonstrate that short energetic in-cloud pulses can generate four-peak elves, and a temporal resolution of at least 25 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>s is required to separate them. Therefore, temporal resolution is crucial in the study of multi-elves. Our observations in the Córdoba province, central Argentina, indicate that the current understanding of the mechanism generating these phenomena may be incomplete, and further studies are needed to assess whether multi-elves are more likely related to the waveform shape of the lightning than to its altitude.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004321","citationCount":"0","resultStr":"{\"title\":\"Quasi-Constant Time Gap in Multiple Rings of Elves\",\"authors\":\"The Pierre Auger Collaboration\",\"doi\":\"10.1029/2025EA004321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present evidence that the time delay between the multiple rings of elves is not caused by the ground reflection of the electromagnetic pulse produced by intracloud lightning. To investigate temporal differences of multi-elves, we analyzed data from four storms occurring at various times and distances from the Pierre Auger Observatory in Malargüe, Argentina. The Auger fluorescence detector's high temporal resolution of 100 ns enabled the frequent observation of multi-elves, accounting for approximately 23% of the events. By examining the traces of 70 double and 24 triple elves, we demonstrate that the time delay between the rings remains relatively constant regardless of the arc distance to the lightning. These results deviate from the trend expected from the electromagnetic pulse (EMP) ground reflection model, which predicts a decreasing time delay with increasing arc distance from an intracloud lightning at a given height. The first emission ring is due to a direct path of the EMP to the ionosphere, with the reflected EMP creating the second ring. Simulations conducted with this model demonstrate that short energetic in-cloud pulses can generate four-peak elves, and a temporal resolution of at least 25 <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n </mrow>\\n <annotation> ${\\\\upmu }$</annotation>\\n </semantics></math>s is required to separate them. Therefore, temporal resolution is crucial in the study of multi-elves. Our observations in the Córdoba province, central Argentina, indicate that the current understanding of the mechanism generating these phenomena may be incomplete, and further studies are needed to assess whether multi-elves are more likely related to the waveform shape of the lightning than to its altitude.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004321\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025EA004321\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025EA004321","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的证据表明,精灵多环之间的时间延迟不是由云内闪电产生的电磁脉冲的地面反射引起的。为了研究多精灵的时间差异,我们分析了阿根廷马拉arg皮埃尔·奥格天文台在不同时间和不同距离发生的四次风暴的数据。俄歇荧光探测器的高时间分辨率为100纳秒,可以频繁地观察到多精灵,约占事件的23%。通过检查70个双精灵和24个三精灵的轨迹,我们证明了无论到闪电的弧线距离如何,环之间的时间延迟保持相对恒定。这些结果偏离了电磁脉冲(EMP)地面反射模型的预期趋势,该模型预测在给定高度,随着与云内闪电弧距的增加,时间延迟会减少。第一个发射环是由于电磁脉冲到电离层的直接路径,反射的电磁脉冲产生第二个环。利用该模型进行的仿真表明,短能量云内脉冲可以产生四峰脉冲,分离它们需要至少25 μ ${\upmu}$ s的时间分辨率。因此,时间分辨率在多精灵的研究中至关重要。我们在阿根廷中部Córdoba省的观察表明,目前对产生这些现象的机制的理解可能是不完整的,需要进一步的研究来评估多精灵是否更可能与闪电的波形形状有关,而不是与闪电的高度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quasi-Constant Time Gap in Multiple Rings of Elves

Quasi-Constant Time Gap in Multiple Rings of Elves

We present evidence that the time delay between the multiple rings of elves is not caused by the ground reflection of the electromagnetic pulse produced by intracloud lightning. To investigate temporal differences of multi-elves, we analyzed data from four storms occurring at various times and distances from the Pierre Auger Observatory in Malargüe, Argentina. The Auger fluorescence detector's high temporal resolution of 100 ns enabled the frequent observation of multi-elves, accounting for approximately 23% of the events. By examining the traces of 70 double and 24 triple elves, we demonstrate that the time delay between the rings remains relatively constant regardless of the arc distance to the lightning. These results deviate from the trend expected from the electromagnetic pulse (EMP) ground reflection model, which predicts a decreasing time delay with increasing arc distance from an intracloud lightning at a given height. The first emission ring is due to a direct path of the EMP to the ionosphere, with the reflected EMP creating the second ring. Simulations conducted with this model demonstrate that short energetic in-cloud pulses can generate four-peak elves, and a temporal resolution of at least 25 μ ${\upmu }$ s is required to separate them. Therefore, temporal resolution is crucial in the study of multi-elves. Our observations in the Córdoba province, central Argentina, indicate that the current understanding of the mechanism generating these phenomena may be incomplete, and further studies are needed to assess whether multi-elves are more likely related to the waveform shape of the lightning than to its altitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信