Toni Himmelstoss, Jakob Rom, Florian Haas, Michael Becht, Tobias Heckmann
{"title":"测试不同强迫条件下泥石流耦合连通性指数的预测能力:来自奥地利Horlachtal流域两个连续事件的见解","authors":"Toni Himmelstoss, Jakob Rom, Florian Haas, Michael Becht, Tobias Heckmann","doi":"10.1002/esp.70173","DOIUrl":null,"url":null,"abstract":"<p>This study examines the relationship between structural connectivity, forcing conditions and functional connectivity of debris flows in an alpine catchment in the Austrian Alps. We investigate two consecutive rainfall events in the Horlachtal valley in 2022 that triggered 163 and 69 debris flows, respectively, providing a unique opportunity to assess connectivity under different rainfall forcing magnitudes. Using the Index of Connectivity (IC) to represent structural connectivity, spatially distributed precipitation data for forcing and a debris flow–channel proximity metric to quantify functional connectivity, we evaluate how well the IC predicts debris flow–channel coupling with and without incorporating observed forcing information. Our results demonstrate that the IC serves as a robust predictor of debris flow connectivity across different forcing conditions, with strong correlations for both events. While observed rainfall forcing showed moderate correlation with functional connectivity, their inclusion in predictive models provided only marginal improvement (2% additional variance explained) over IC alone. This suggests that topographic and morphological constraints, rather than precipitation patterns, predominantly control debris flow propagation in this setting. Notably, the predictive capability of the IC proved relatively stable despite substantial differences in rainfall magnitude between events. Various regression models were evaluated, with quadratic and beta regression approaches performing best. The proximity metric used in this study offers advantages over binary coupling classifications by providing more nuanced information about functional connectivity, especially valuable when most observed processes do not reach the channel network. These findings empirically validate the IC as a meaningful descriptor of system structure in alpine catchments and suggest that challenges in spatial transferability of IC models likely stem from factors other than forcing variability.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 13","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.70173","citationCount":"0","resultStr":"{\"title\":\"Testing the predictive capability of the Index of Connectivity for debris-flow coupling under varying forcing conditions: Insights from two consecutive events in the Horlachtal catchment, Austria\",\"authors\":\"Toni Himmelstoss, Jakob Rom, Florian Haas, Michael Becht, Tobias Heckmann\",\"doi\":\"10.1002/esp.70173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study examines the relationship between structural connectivity, forcing conditions and functional connectivity of debris flows in an alpine catchment in the Austrian Alps. We investigate two consecutive rainfall events in the Horlachtal valley in 2022 that triggered 163 and 69 debris flows, respectively, providing a unique opportunity to assess connectivity under different rainfall forcing magnitudes. Using the Index of Connectivity (IC) to represent structural connectivity, spatially distributed precipitation data for forcing and a debris flow–channel proximity metric to quantify functional connectivity, we evaluate how well the IC predicts debris flow–channel coupling with and without incorporating observed forcing information. Our results demonstrate that the IC serves as a robust predictor of debris flow connectivity across different forcing conditions, with strong correlations for both events. While observed rainfall forcing showed moderate correlation with functional connectivity, their inclusion in predictive models provided only marginal improvement (2% additional variance explained) over IC alone. This suggests that topographic and morphological constraints, rather than precipitation patterns, predominantly control debris flow propagation in this setting. Notably, the predictive capability of the IC proved relatively stable despite substantial differences in rainfall magnitude between events. Various regression models were evaluated, with quadratic and beta regression approaches performing best. The proximity metric used in this study offers advantages over binary coupling classifications by providing more nuanced information about functional connectivity, especially valuable when most observed processes do not reach the channel network. These findings empirically validate the IC as a meaningful descriptor of system structure in alpine catchments and suggest that challenges in spatial transferability of IC models likely stem from factors other than forcing variability.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"50 13\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/esp.70173\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.70173\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70173","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Testing the predictive capability of the Index of Connectivity for debris-flow coupling under varying forcing conditions: Insights from two consecutive events in the Horlachtal catchment, Austria
This study examines the relationship between structural connectivity, forcing conditions and functional connectivity of debris flows in an alpine catchment in the Austrian Alps. We investigate two consecutive rainfall events in the Horlachtal valley in 2022 that triggered 163 and 69 debris flows, respectively, providing a unique opportunity to assess connectivity under different rainfall forcing magnitudes. Using the Index of Connectivity (IC) to represent structural connectivity, spatially distributed precipitation data for forcing and a debris flow–channel proximity metric to quantify functional connectivity, we evaluate how well the IC predicts debris flow–channel coupling with and without incorporating observed forcing information. Our results demonstrate that the IC serves as a robust predictor of debris flow connectivity across different forcing conditions, with strong correlations for both events. While observed rainfall forcing showed moderate correlation with functional connectivity, their inclusion in predictive models provided only marginal improvement (2% additional variance explained) over IC alone. This suggests that topographic and morphological constraints, rather than precipitation patterns, predominantly control debris flow propagation in this setting. Notably, the predictive capability of the IC proved relatively stable despite substantial differences in rainfall magnitude between events. Various regression models were evaluated, with quadratic and beta regression approaches performing best. The proximity metric used in this study offers advantages over binary coupling classifications by providing more nuanced information about functional connectivity, especially valuable when most observed processes do not reach the channel network. These findings empirically validate the IC as a meaningful descriptor of system structure in alpine catchments and suggest that challenges in spatial transferability of IC models likely stem from factors other than forcing variability.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences