重力属性和模空间M g,n ${\mathcal {M}}_{g,n}$

IF 1.2 2区 数学 Q1 MATHEMATICS
Sergei A. Merkulov
{"title":"重力属性和模空间M g,n ${\\mathcal {M}}_{g,n}$","authors":"Sergei A. Merkulov","doi":"10.1112/jlms.70313","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>+</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>${\\mathcal {M}}_{g,m+n}$</annotation>\n </semantics></math> be the moduli space of algebraic curves of genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$m\\geqslant 1$</annotation>\n </semantics></math> boundaries and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$n\\geqslant 0$</annotation>\n </semantics></math> marked points, and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>c</mi>\n <mo>•</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>m</mi>\n <mo>+</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H_c^{\\bullet }({\\mathcal {M}}_{m+n})$</annotation>\n </semantics></math> its compactly supported cohomology group. We prove that the collection of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mi>m</mi>\n <mrow>\n <mi>o</mi>\n <mi>p</mi>\n </mrow>\n </msubsup>\n <mo>×</mo>\n <msub>\n <mi>S</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>${\\mathbb {S}}_m^{op}\\times {\\mathbb {S}}_n$</annotation>\n </semantics></math>-modules\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity properad and moduli spaces \\n \\n \\n M\\n \\n g\\n ,\\n n\\n \\n \\n ${\\\\mathcal {M}}_{g,n}$\",\"authors\":\"Sergei A. Merkulov\",\"doi\":\"10.1112/jlms.70313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>${\\\\mathcal {M}}_{g,m+n}$</annotation>\\n </semantics></math> be the moduli space of algebraic curves of genus <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$m\\\\geqslant 1$</annotation>\\n </semantics></math> boundaries and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$n\\\\geqslant 0$</annotation>\\n </semantics></math> marked points, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>H</mi>\\n <mi>c</mi>\\n <mo>•</mo>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>m</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$H_c^{\\\\bullet }({\\\\mathcal {M}}_{m+n})$</annotation>\\n </semantics></math> its compactly supported cohomology group. We prove that the collection of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>S</mi>\\n <mi>m</mi>\\n <mrow>\\n <mi>o</mi>\\n <mi>p</mi>\\n </mrow>\\n </msubsup>\\n <mo>×</mo>\\n <msub>\\n <mi>S</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>${\\\\mathbb {S}}_m^{op}\\\\times {\\\\mathbb {S}}_n$</annotation>\\n </semantics></math>-modules\\n\\n </p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70313\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70313","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设mg,M + n ${\mathcal {M}}_{g,m+n}$是g格$g$的代数曲线的模空间,具有M大于或等于$m\geqslant 1$的边界和n大于或等于或等于0 $n\geqslant 0$标记点;H c•(M M + n) $H_c^{\bullet }({\mathcal {M}}_{m+n})$结构紧凑上同调群。证明了S mo p × S n ${\mathbb {S}}_m^{op}\times {\mathbb {S}}_n$ -模的集合
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gravity properad and moduli spaces 
         
            
               M
               
                  g
                  ,
                  n
               
            
            ${\mathcal {M}}_{g,n}$

Gravity properad and moduli spaces M g , n ${\mathcal {M}}_{g,n}$

Let M g , m + n ${\mathcal {M}}_{g,m+n}$ be the moduli space of algebraic curves of genus g $g$ with m 1 $m\geqslant 1$ boundaries and n 0 $n\geqslant 0$ marked points, and H c ( M m + n ) $H_c^{\bullet }({\mathcal {M}}_{m+n})$ its compactly supported cohomology group. We prove that the collection of S m o p × S n ${\mathbb {S}}_m^{op}\times {\mathbb {S}}_n$ -modules

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信