二维超耗散Navier-Stokes方程的尖锐非唯一性

IF 1.2 2区 数学 Q1 MATHEMATICS
Lili Du, Xinliang Li
{"title":"二维超耗散Navier-Stokes方程的尖锐非唯一性","authors":"Lili Du,&nbsp;Xinliang Li","doi":"10.1112/jlms.70317","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mi>t</mi>\n <mi>γ</mi>\n </msubsup>\n <msubsup>\n <mi>W</mi>\n <mi>x</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$L_{t}^{\\gamma }W_{x}^{s,p}$</annotation>\n </semantics></math> when the viscosity exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha \\in [1,\\frac{3}{2})$</annotation>\n </semantics></math>, and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>γ</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(s,\\gamma,p)=(s,\\infty, \\frac{2}{2\\alpha -1+s})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(s, \\frac{2\\alpha }{2\\alpha -1+s}, \\infty)$</annotation>\n </semantics></math>. By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha \\in (1,\\frac{3}{2})$</annotation>\n </semantics></math>. In particularly, the viscosity exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$\\alpha =\\frac{3}{2}$</annotation>\n </semantics></math> is the upper limit for the one endpoint case <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$(s,\\infty, \\frac{2}{2\\alpha -1+s})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$s=0$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp non-uniqueness for the 2D hyper-dissipative Navier–Stokes equations\",\"authors\":\"Lili Du,&nbsp;Xinliang Li\",\"doi\":\"10.1112/jlms.70317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mi>t</mi>\\n <mi>γ</mi>\\n </msubsup>\\n <msubsup>\\n <mi>W</mi>\\n <mi>x</mi>\\n <mrow>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$L_{t}^{\\\\gamma }W_{x}^{s,p}$</annotation>\\n </semantics></math> when the viscosity exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in [1,\\\\frac{3}{2})$</annotation>\\n </semantics></math>, and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>γ</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(s,\\\\gamma,p)=(s,\\\\infty, \\\\frac{2}{2\\\\alpha -1+s})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(s, \\\\frac{2\\\\alpha }{2\\\\alpha -1+s}, \\\\infty)$</annotation>\\n </semantics></math>. By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in (1,\\\\frac{3}{2})$</annotation>\\n </semantics></math>. In particularly, the viscosity exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\alpha =\\\\frac{3}{2}$</annotation>\\n </semantics></math> is the upper limit for the one endpoint case <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(s,\\\\infty, \\\\frac{2}{2\\\\alpha -1+s})$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$s=0$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70317\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70317","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维超耗散Navier-Stokes方程(NSE)在超临界空间L t γ W x s中弱解的非唯一性。P $L_{t}^{\gamma }W_{x}^{s,p}$时,粘度指数α∈[1,32]$\alpha \in [1,\frac{3}{2})$,并在三重态(s, γ,P) = (s,∞,2 2 α−1 + s) $(s,\gamma,p)=(s,\infty, \frac{2}{2\alpha -1+s})$和(s,2 α 2 α−1 + s,∞)$(s, \frac{2\alpha }{2\alpha -1+s}, \infty)$。通过以几乎最优的方式使用时间集中函数的间歇性,我们扩展了最近在Cheskidov和Luo [Invent]中关于2D NSE的非唯一性的优雅工作。数学。229 (2022),no。[au:] [j]。PDE, 9 (2023), no。2,论文13]到超耗散情况α∈(1,32)$\alpha \in (1,\frac{3}{2})$。特别是,粘度指数α = 32 $\alpha =\frac{3}{2}$是单端点情况(s,∞)的上限。2 2 α−1 + s) $(s,\infty, \frac{2}{2\alpha -1+s})$当s = 0 $s=0$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sharp non-uniqueness for the 2D hyper-dissipative Navier–Stokes equations

Sharp non-uniqueness for the 2D hyper-dissipative Navier–Stokes equations

In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces L t γ W x s , p $L_{t}^{\gamma }W_{x}^{s,p}$ when the viscosity exponent α [ 1 , 3 2 ) $\alpha \in [1,\frac{3}{2})$ , and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet ( s , γ , p ) = ( s , , 2 2 α 1 + s ) $(s,\gamma,p)=(s,\infty, \frac{2}{2\alpha -1+s})$ and ( s , 2 α 2 α 1 + s , ) $(s, \frac{2\alpha }{2\alpha -1+s}, \infty)$ . By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case α ( 1 , 3 2 ) $\alpha \in (1,\frac{3}{2})$ . In particularly, the viscosity exponent α = 3 2 $\alpha =\frac{3}{2}$ is the upper limit for the one endpoint case ( s , , 2 2 α 1 + s ) $(s,\infty, \frac{2}{2\alpha -1+s})$ when s = 0 $s=0$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信