{"title":"二维超耗散Navier-Stokes方程的尖锐非唯一性","authors":"Lili Du, Xinliang Li","doi":"10.1112/jlms.70317","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mi>t</mi>\n <mi>γ</mi>\n </msubsup>\n <msubsup>\n <mi>W</mi>\n <mi>x</mi>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </mrow>\n <annotation>$L_{t}^{\\gamma }W_{x}^{s,p}$</annotation>\n </semantics></math> when the viscosity exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha \\in [1,\\frac{3}{2})$</annotation>\n </semantics></math>, and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>γ</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(s,\\gamma,p)=(s,\\infty, \\frac{2}{2\\alpha -1+s})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(s, \\frac{2\\alpha }{2\\alpha -1+s}, \\infty)$</annotation>\n </semantics></math>. By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha \\in (1,\\frac{3}{2})$</annotation>\n </semantics></math>. In particularly, the viscosity exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>=</mo>\n <mfrac>\n <mn>3</mn>\n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation>$\\alpha =\\frac{3}{2}$</annotation>\n </semantics></math> is the upper limit for the one endpoint case <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>,</mo>\n <mfrac>\n <mn>2</mn>\n <mrow>\n <mn>2</mn>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>s</mi>\n </mrow>\n </mfrac>\n <mo>)</mo>\n </mrow>\n <annotation>$(s,\\infty, \\frac{2}{2\\alpha -1+s})$</annotation>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$s=0$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"112 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp non-uniqueness for the 2D hyper-dissipative Navier–Stokes equations\",\"authors\":\"Lili Du, Xinliang Li\",\"doi\":\"10.1112/jlms.70317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mi>t</mi>\\n <mi>γ</mi>\\n </msubsup>\\n <msubsup>\\n <mi>W</mi>\\n <mi>x</mi>\\n <mrow>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation>$L_{t}^{\\\\gamma }W_{x}^{s,p}$</annotation>\\n </semantics></math> when the viscosity exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mo>[</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in [1,\\\\frac{3}{2})$</annotation>\\n </semantics></math>, and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>γ</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(s,\\\\gamma,p)=(s,\\\\infty, \\\\frac{2}{2\\\\alpha -1+s})$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(s, \\\\frac{2\\\\alpha }{2\\\\alpha -1+s}, \\\\infty)$</annotation>\\n </semantics></math>. By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha \\\\in (1,\\\\frac{3}{2})$</annotation>\\n </semantics></math>. In particularly, the viscosity exponent <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>=</mo>\\n <mfrac>\\n <mn>3</mn>\\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation>$\\\\alpha =\\\\frac{3}{2}$</annotation>\\n </semantics></math> is the upper limit for the one endpoint case <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mn>2</mn>\\n <mrow>\\n <mn>2</mn>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>s</mi>\\n </mrow>\\n </mfrac>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(s,\\\\infty, \\\\frac{2}{2\\\\alpha -1+s})$</annotation>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$s=0$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"112 4\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70317\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.70317","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Sharp non-uniqueness for the 2D hyper-dissipative Navier–Stokes equations
In this paper, we study the non-uniqueness of weak solutions for the two-dimensional hyper-dissipative Navier–Stokes equations (NSE) in the super-critical spaces when the viscosity exponent , and obtain the conclusion that the non-uniqueness of the weak solutions at the two endpoints is sharp in view of the generalized Ladyženskaya–Prodi–Serrin condition with the triplet and . By using the intermittency of the temporal concentrated function in an almost optimal way, we extend the recent elegant works on the non-uniqueness of 2D NSE in Cheskidov and Luo [Invent. Math. 229 (2022), no. 3, 987–1054] and [Ann. PDE, 9 (2023), no. 2, Paper No. 13] to the hyper-dissipative case . In particularly, the viscosity exponent is the upper limit for the one endpoint case when .
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.