评估多种自然洪水管理干预措施对下游洪水影响的水文-水动力耦合建模方法

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Qiuyu Zhu, Megan Klaar, Thomas Willis, Joseph Holden
{"title":"评估多种自然洪水管理干预措施对下游洪水影响的水文-水动力耦合建模方法","authors":"Qiuyu Zhu,&nbsp;Megan Klaar,&nbsp;Thomas Willis,&nbsp;Joseph Holden","doi":"10.1111/jfr3.70129","DOIUrl":null,"url":null,"abstract":"<p>While natural flood management (NFM) as a flood mitigation strategy is becoming widely used, there remains a lack of evidence regarding the effectiveness of different NFM scenarios under high flow events. To demonstrate how different types and extents of NFM interventions interact to flood peaks at larger catchment scales, combined scenarios of existing NFM interventions and an ideal maximum woodland scenario were modelled in the Upper Aire, northern England, using a coupled model that integrates Spatially Distributed TOPMODEL (SD-TOPMODEL) with a 2D hydrodynamic model (Flood Modeller 2D) at an 81.4 km<sup>2</sup> catchment. The coupled model exhibited a strong fit with observed data (NSE up to 0.95), effectively capturing flood peaks and peak shapes. Leaky dams were found to be more effective at delaying flood peaks with mean values ranging from 8.6 to 60 min than reducing peak discharge (mean values ranging from 0.53% to 1.84%), though these effects were inversely proportional and influenced by tributary characteristics such as channel gradient. Simulations applying multiple NFM interventions consistently demonstrated positive flood mitigation impacts, including reduced peak discharge up to 2.59% and delayed peaks up to 30 min, while inundation depths reduced by 0.5 m in most areas, with inundation extent reduction at critical points in an urban area. The study demonstrated the utility of the coupled model for evaluating NFM strategies while emphasising the need for further validation and exploration of systematic interventions at larger catchment scales. By providing insights into the interactions between NFM interventions and catchment characteristics, this research contributes to the optimisation of flood risk management strategies and informs future policy development.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70129","citationCount":"0","resultStr":"{\"title\":\"A Coupled Hydrological-Hydrodynamic Modelling Approach for Assessing the Impacts of Multiple Natural Flood Management Interventions on Downstream Flooding\",\"authors\":\"Qiuyu Zhu,&nbsp;Megan Klaar,&nbsp;Thomas Willis,&nbsp;Joseph Holden\",\"doi\":\"10.1111/jfr3.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While natural flood management (NFM) as a flood mitigation strategy is becoming widely used, there remains a lack of evidence regarding the effectiveness of different NFM scenarios under high flow events. To demonstrate how different types and extents of NFM interventions interact to flood peaks at larger catchment scales, combined scenarios of existing NFM interventions and an ideal maximum woodland scenario were modelled in the Upper Aire, northern England, using a coupled model that integrates Spatially Distributed TOPMODEL (SD-TOPMODEL) with a 2D hydrodynamic model (Flood Modeller 2D) at an 81.4 km<sup>2</sup> catchment. The coupled model exhibited a strong fit with observed data (NSE up to 0.95), effectively capturing flood peaks and peak shapes. Leaky dams were found to be more effective at delaying flood peaks with mean values ranging from 8.6 to 60 min than reducing peak discharge (mean values ranging from 0.53% to 1.84%), though these effects were inversely proportional and influenced by tributary characteristics such as channel gradient. Simulations applying multiple NFM interventions consistently demonstrated positive flood mitigation impacts, including reduced peak discharge up to 2.59% and delayed peaks up to 30 min, while inundation depths reduced by 0.5 m in most areas, with inundation extent reduction at critical points in an urban area. The study demonstrated the utility of the coupled model for evaluating NFM strategies while emphasising the need for further validation and exploration of systematic interventions at larger catchment scales. By providing insights into the interactions between NFM interventions and catchment characteristics, this research contributes to the optimisation of flood risk management strategies and informs future policy development.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70129\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70129\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70129","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然自然洪水管理(NFM)作为一种缓解洪水的策略正被广泛使用,但关于不同的NFM方案在高流量事件下的有效性,仍然缺乏证据。为了证明不同类型和程度的NFM干预措施是如何在更大的流域尺度上与洪峰相互作用的,在英格兰北部的Upper Aire,使用一个耦合模型,在81.4 km2的流域中集成了空间分布TOPMODEL (SD-TOPMODEL)和二维水动力学模型(flood modeler 2D),将现有NFM干预措施的情景和理想的最大林地情景结合起来进行了建模。耦合模型与实测数据拟合较好(NSE达0.95),能较好地捕捉洪峰和洪峰形状。研究发现,与减少洪峰流量(平均值为0.53%至1.84%)相比,漏坝在延迟洪峰(平均值为8.6至60分钟)方面更有效,尽管这些效果成反比,并受河道坡度等支流特征的影响。应用多种NFM干预措施的模拟一致显示出积极的洪水缓解影响,包括减少峰值流量达2.59%,延迟峰值达30分钟,而大多数地区的淹没深度减少了0.5米,城市地区的关键点淹没程度减少。该研究证明了耦合模型在评估NFM策略方面的效用,同时强调需要在更大的流域尺度上进一步验证和探索系统干预措施。通过深入了解NFM干预措施与流域特征之间的相互作用,本研究有助于优化洪水风险管理策略,并为未来的政策制定提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Coupled Hydrological-Hydrodynamic Modelling Approach for Assessing the Impacts of Multiple Natural Flood Management Interventions on Downstream Flooding

A Coupled Hydrological-Hydrodynamic Modelling Approach for Assessing the Impacts of Multiple Natural Flood Management Interventions on Downstream Flooding

While natural flood management (NFM) as a flood mitigation strategy is becoming widely used, there remains a lack of evidence regarding the effectiveness of different NFM scenarios under high flow events. To demonstrate how different types and extents of NFM interventions interact to flood peaks at larger catchment scales, combined scenarios of existing NFM interventions and an ideal maximum woodland scenario were modelled in the Upper Aire, northern England, using a coupled model that integrates Spatially Distributed TOPMODEL (SD-TOPMODEL) with a 2D hydrodynamic model (Flood Modeller 2D) at an 81.4 km2 catchment. The coupled model exhibited a strong fit with observed data (NSE up to 0.95), effectively capturing flood peaks and peak shapes. Leaky dams were found to be more effective at delaying flood peaks with mean values ranging from 8.6 to 60 min than reducing peak discharge (mean values ranging from 0.53% to 1.84%), though these effects were inversely proportional and influenced by tributary characteristics such as channel gradient. Simulations applying multiple NFM interventions consistently demonstrated positive flood mitigation impacts, including reduced peak discharge up to 2.59% and delayed peaks up to 30 min, while inundation depths reduced by 0.5 m in most areas, with inundation extent reduction at critical points in an urban area. The study demonstrated the utility of the coupled model for evaluating NFM strategies while emphasising the need for further validation and exploration of systematic interventions at larger catchment scales. By providing insights into the interactions between NFM interventions and catchment characteristics, this research contributes to the optimisation of flood risk management strategies and informs future policy development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信