Yuqing Yue, Yang Zhang, Yifan Zheng, Yuchuan Shao, Bin Wei, Wei Shi
{"title":"柔性钙钛矿太阳能电池的耐湿热塑性聚氨酯封装","authors":"Yuqing Yue, Yang Zhang, Yifan Zheng, Yuchuan Shao, Bin Wei, Wei Shi","doi":"10.1002/ente.202402310","DOIUrl":null,"url":null,"abstract":"<p>With increasing global energy demand and environmental challenges, advancing efficient and stable renewable energy technologies is critical. Flexible perovskite solar cells (FPSCs) have emerged as a prominent research focus due to their exceptional power conversion efficiency (PCE) and cost effectiveness. However, the susceptibility of perovskite materials to moisture and oxygen hinders their commercial viability. This study proposes a novel encapsulation technique using transparent thermoplastic polyurethane (TPU) with low moisture permeability to enhance the stability and durability of FPSC. First, it is demonstrated that the TPU encapsulation process is compatible with the perovskite solar cells (PSC) module and lossless encapsulation can be achieved without degradation in efficiency. Second, through micromorphological characterization analysis, it is confirmed that TPU encapsulation can effectively prevent water–oxygen ingress, retard the decomposition of perovskite materials, and improve the stability of the film. The experimental results demonstrate that TPU-encapsulated PSCs retain 95% of their original PCE after 1000 h at 25 °C and 50% relative humidity (RH) and sustain 80% of the original efficiency after 200 h of underwater immersion. Finally, it is demonstrated that the TPU encapsulation has a significant advantage in terms of manufacture cost, which positively contributes to the commercialization of PSC.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moisture-Resistant Thermoplastic Polyurethane Encapsulation for Flexible Perovskite Solar Cells\",\"authors\":\"Yuqing Yue, Yang Zhang, Yifan Zheng, Yuchuan Shao, Bin Wei, Wei Shi\",\"doi\":\"10.1002/ente.202402310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With increasing global energy demand and environmental challenges, advancing efficient and stable renewable energy technologies is critical. Flexible perovskite solar cells (FPSCs) have emerged as a prominent research focus due to their exceptional power conversion efficiency (PCE) and cost effectiveness. However, the susceptibility of perovskite materials to moisture and oxygen hinders their commercial viability. This study proposes a novel encapsulation technique using transparent thermoplastic polyurethane (TPU) with low moisture permeability to enhance the stability and durability of FPSC. First, it is demonstrated that the TPU encapsulation process is compatible with the perovskite solar cells (PSC) module and lossless encapsulation can be achieved without degradation in efficiency. Second, through micromorphological characterization analysis, it is confirmed that TPU encapsulation can effectively prevent water–oxygen ingress, retard the decomposition of perovskite materials, and improve the stability of the film. The experimental results demonstrate that TPU-encapsulated PSCs retain 95% of their original PCE after 1000 h at 25 °C and 50% relative humidity (RH) and sustain 80% of the original efficiency after 200 h of underwater immersion. Finally, it is demonstrated that the TPU encapsulation has a significant advantage in terms of manufacture cost, which positively contributes to the commercialization of PSC.</p>\",\"PeriodicalId\":11573,\"journal\":{\"name\":\"Energy technology\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402310\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202402310","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Moisture-Resistant Thermoplastic Polyurethane Encapsulation for Flexible Perovskite Solar Cells
With increasing global energy demand and environmental challenges, advancing efficient and stable renewable energy technologies is critical. Flexible perovskite solar cells (FPSCs) have emerged as a prominent research focus due to their exceptional power conversion efficiency (PCE) and cost effectiveness. However, the susceptibility of perovskite materials to moisture and oxygen hinders their commercial viability. This study proposes a novel encapsulation technique using transparent thermoplastic polyurethane (TPU) with low moisture permeability to enhance the stability and durability of FPSC. First, it is demonstrated that the TPU encapsulation process is compatible with the perovskite solar cells (PSC) module and lossless encapsulation can be achieved without degradation in efficiency. Second, through micromorphological characterization analysis, it is confirmed that TPU encapsulation can effectively prevent water–oxygen ingress, retard the decomposition of perovskite materials, and improve the stability of the film. The experimental results demonstrate that TPU-encapsulated PSCs retain 95% of their original PCE after 1000 h at 25 °C and 50% relative humidity (RH) and sustain 80% of the original efficiency after 200 h of underwater immersion. Finally, it is demonstrated that the TPU encapsulation has a significant advantage in terms of manufacture cost, which positively contributes to the commercialization of PSC.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.