网络守护者:用于规避网络威胁检测的具有对抗对齐的集成学习框架

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Khandakar Md Shafin, G. M. Abdullah Al Kafi, Saha Reno
{"title":"网络守护者:用于规避网络威胁检测的具有对抗对齐的集成学习框架","authors":"Khandakar Md Shafin,&nbsp;G. M. Abdullah Al Kafi,&nbsp;Saha Reno","doi":"10.1002/eng2.70419","DOIUrl":null,"url":null,"abstract":"<p>Advanced cyber threats such as zero-day exploits and sophisticated evasion techniques challenge Network Intrusion Detection Systems (NIDS). To address this, we propose a robust machine learning framework that integrates multi-source data fusion, protocol-aware preprocessing, and ensemble learning. Our study uses a comprehensive dataset of 12.7 million real-world network flows (10.1M benign, 2.6M malicious) collected from enterprise environments. Our key innovation is a weighted voting ensemble—combining Logistic Regression, Decision Trees, and a 1D-CNN—which achieves 99.8% detection accuracy while reducing false positives by 4.9% compared to individual models. The system also incorporates a lightweight adversarial aligner to counter evasion techniques (e.g., IP fragmentation, MAC spoofing), recovering up to 95% of baseline recall. Notably, under extreme class imbalance (1:99), our framework maintains 80.1% recall with only 8.2 false positives per million packets, outperforming deep learning models like LSTM and 1D-CNN while using 100 times fewer parameters. These results demonstrate the framework's practicality for efficient, high-throughput NIDS deployments in real-world settings.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70419","citationCount":"0","resultStr":"{\"title\":\"Guardians of the Network: An Ensemble Learning Framework With Adversarial Alignment for Evasive Cyber Threat Detection\",\"authors\":\"Khandakar Md Shafin,&nbsp;G. M. Abdullah Al Kafi,&nbsp;Saha Reno\",\"doi\":\"10.1002/eng2.70419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advanced cyber threats such as zero-day exploits and sophisticated evasion techniques challenge Network Intrusion Detection Systems (NIDS). To address this, we propose a robust machine learning framework that integrates multi-source data fusion, protocol-aware preprocessing, and ensemble learning. Our study uses a comprehensive dataset of 12.7 million real-world network flows (10.1M benign, 2.6M malicious) collected from enterprise environments. Our key innovation is a weighted voting ensemble—combining Logistic Regression, Decision Trees, and a 1D-CNN—which achieves 99.8% detection accuracy while reducing false positives by 4.9% compared to individual models. The system also incorporates a lightweight adversarial aligner to counter evasion techniques (e.g., IP fragmentation, MAC spoofing), recovering up to 95% of baseline recall. Notably, under extreme class imbalance (1:99), our framework maintains 80.1% recall with only 8.2 false positives per million packets, outperforming deep learning models like LSTM and 1D-CNN while using 100 times fewer parameters. These results demonstrate the framework's practicality for efficient, high-throughput NIDS deployments in real-world settings.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70419\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

先进的网络威胁,如零日漏洞和复杂的逃避技术挑战网络入侵检测系统(NIDS)。为了解决这个问题,我们提出了一个强大的机器学习框架,该框架集成了多源数据融合、协议感知预处理和集成学习。我们的研究使用了从企业环境中收集的1270万个真实网络流的综合数据集(1010万个良性网络流,260万个恶意网络流)。我们的关键创新是加权投票集成-结合逻辑回归,决策树和1d - cnn -达到99.8%的检测精度,同时与单个模型相比减少了4.9%的误报。该系统还结合了一个轻量级的对抗性对齐器来对抗逃避技术(例如,IP碎片,MAC欺骗),恢复高达95%的基线召回率。值得注意的是,在极端的类不平衡(1:99)下,我们的框架保持了80.1%的召回率,每百万数据包只有8.2个误报,优于LSTM和d1 - cnn等深度学习模型,同时使用的参数少了100倍。这些结果证明了该框架在实际环境中高效、高吞吐量NIDS部署的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Guardians of the Network: An Ensemble Learning Framework With Adversarial Alignment for Evasive Cyber Threat Detection

Guardians of the Network: An Ensemble Learning Framework With Adversarial Alignment for Evasive Cyber Threat Detection

Advanced cyber threats such as zero-day exploits and sophisticated evasion techniques challenge Network Intrusion Detection Systems (NIDS). To address this, we propose a robust machine learning framework that integrates multi-source data fusion, protocol-aware preprocessing, and ensemble learning. Our study uses a comprehensive dataset of 12.7 million real-world network flows (10.1M benign, 2.6M malicious) collected from enterprise environments. Our key innovation is a weighted voting ensemble—combining Logistic Regression, Decision Trees, and a 1D-CNN—which achieves 99.8% detection accuracy while reducing false positives by 4.9% compared to individual models. The system also incorporates a lightweight adversarial aligner to counter evasion techniques (e.g., IP fragmentation, MAC spoofing), recovering up to 95% of baseline recall. Notably, under extreme class imbalance (1:99), our framework maintains 80.1% recall with only 8.2 false positives per million packets, outperforming deep learning models like LSTM and 1D-CNN while using 100 times fewer parameters. These results demonstrate the framework's practicality for efficient, high-throughput NIDS deployments in real-world settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信