BGC-Argo浮标揭示海洋中亚硝酸盐和硫代硫酸盐的高时空分辨率动态

IF 5.5 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Mariana B. Bif, Kenneth S. Johnson
{"title":"BGC-Argo浮标揭示海洋中亚硝酸盐和硫代硫酸盐的高时空分辨率动态","authors":"Mariana B. Bif,&nbsp;Kenneth S. Johnson","doi":"10.1029/2024GB008473","DOIUrl":null,"url":null,"abstract":"<p>Marine oxygen deficient zones (ODZs) play a major role in the Earth's biogeochemical cycles and are responsible for nitrogen and sulfur removal from the oceans. Microbial-reducing reaction processes generate nitrite (NO<sub>2</sub><sup>−</sup>) and sulfur compounds as intermediaries that may accumulate in these zones. Current assessments on microbial transformations inside ODZs are based on shipboard measurements, and there are no well-resolved seasonal to annual observations or high-resolution vertical sampling that would characterize variability. Here, we propose an alternative statistical approach to analyze the raw output of the nitrate sensor from BGC-Argo floats with the ability to detect NO<sub>2</sub><sup>−</sup> and thiosulfate (S<sub>2</sub>O<sub>3</sub><sup>2−</sup>) concentrations in addition to nitrate. The new approach provides data with great vertical and spatiotemporal resolution. The method can be applied to UV-spectrometer output data from SUNAs and ISUS nitrate sensors commonly deployed on various observing platforms. We validated the technique in the field by matching shipboard NO<sub>2</sub><sup>−</sup> bottle data with float data from the Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP) ODZs. We then show a complete time series of three floats as study cases. The ability to detect NO<sub>2</sub><sup>−</sup> and S<sub>2</sub>O<sub>3</sub><sup>2−</sup> concomitantly with other key chemical variables (i.e., oxygen, pH, and bio-optics) at such fine scale allows for novel insights into the nitrogen and sulfur cycling of ODZs and processes driving these cycles. This new approach will enable fine-scale remote quantification of NO<sub>2</sub><sup>−</sup> and S<sub>2</sub>O<sub>3</sub><sup>2−</sup> to support a better understanding of the biogeochemical transformations happening inside these already-expanding deoxygenated regions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 10","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008473","citationCount":"0","resultStr":"{\"title\":\"BGC-Argo Floats Reveal Nitrite and Thiosulfate Dynamics in the Oceans With High Spatiotemporal Resolution\",\"authors\":\"Mariana B. Bif,&nbsp;Kenneth S. Johnson\",\"doi\":\"10.1029/2024GB008473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine oxygen deficient zones (ODZs) play a major role in the Earth's biogeochemical cycles and are responsible for nitrogen and sulfur removal from the oceans. Microbial-reducing reaction processes generate nitrite (NO<sub>2</sub><sup>−</sup>) and sulfur compounds as intermediaries that may accumulate in these zones. Current assessments on microbial transformations inside ODZs are based on shipboard measurements, and there are no well-resolved seasonal to annual observations or high-resolution vertical sampling that would characterize variability. Here, we propose an alternative statistical approach to analyze the raw output of the nitrate sensor from BGC-Argo floats with the ability to detect NO<sub>2</sub><sup>−</sup> and thiosulfate (S<sub>2</sub>O<sub>3</sub><sup>2−</sup>) concentrations in addition to nitrate. The new approach provides data with great vertical and spatiotemporal resolution. The method can be applied to UV-spectrometer output data from SUNAs and ISUS nitrate sensors commonly deployed on various observing platforms. We validated the technique in the field by matching shipboard NO<sub>2</sub><sup>−</sup> bottle data with float data from the Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP) ODZs. We then show a complete time series of three floats as study cases. The ability to detect NO<sub>2</sub><sup>−</sup> and S<sub>2</sub>O<sub>3</sub><sup>2−</sup> concomitantly with other key chemical variables (i.e., oxygen, pH, and bio-optics) at such fine scale allows for novel insights into the nitrogen and sulfur cycling of ODZs and processes driving these cycles. This new approach will enable fine-scale remote quantification of NO<sub>2</sub><sup>−</sup> and S<sub>2</sub>O<sub>3</sub><sup>2−</sup> to support a better understanding of the biogeochemical transformations happening inside these already-expanding deoxygenated regions.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 10\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008473\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008473\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GB008473","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

海洋缺氧区(odz)在地球的生物地球化学循环中发挥着重要作用,并负责从海洋中去除氮和硫。微生物还原反应过程产生亚硝酸盐(NO2−)和硫化合物作为中间体,可能在这些区域积累。目前对odz内部微生物转化的评估是基于船上的测量,没有很好的季节性或年度观测,也没有高分辨率的垂直采样来表征变化。在这里,我们提出了一种替代的统计方法来分析BGC-Argo浮标的硝酸盐传感器的原始输出,除了硝酸盐之外,还能检测NO2 -和硫代硫酸盐(S2O32 -)的浓度。新方法提供了高度垂直和时空分辨率的数据。该方法可应用于各种观测平台上常用的SUNAs和ISUS硝酸盐传感器的紫外光谱仪输出数据。通过将船上NO2−瓶数据与东热带北太平洋(ETNP)和东热带南太平洋(ETSP) odz的浮子数据进行匹配,我们在现场验证了该技术。然后,我们展示了三个浮点数的完整时间序列作为研究案例。在如此精细的尺度上检测NO2 -和S2O32 -以及其他关键化学变量(即氧、pH和生物光学)的能力,使我们能够对odz的氮和硫循环以及驱动这些循环的过程有新的认识。这种新方法将实现NO2 -和S2O32 -的精细远程量化,以支持更好地理解这些已经扩大的脱氧区域内发生的生物地球化学转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

BGC-Argo Floats Reveal Nitrite and Thiosulfate Dynamics in the Oceans With High Spatiotemporal Resolution

BGC-Argo Floats Reveal Nitrite and Thiosulfate Dynamics in the Oceans With High Spatiotemporal Resolution

Marine oxygen deficient zones (ODZs) play a major role in the Earth's biogeochemical cycles and are responsible for nitrogen and sulfur removal from the oceans. Microbial-reducing reaction processes generate nitrite (NO2) and sulfur compounds as intermediaries that may accumulate in these zones. Current assessments on microbial transformations inside ODZs are based on shipboard measurements, and there are no well-resolved seasonal to annual observations or high-resolution vertical sampling that would characterize variability. Here, we propose an alternative statistical approach to analyze the raw output of the nitrate sensor from BGC-Argo floats with the ability to detect NO2 and thiosulfate (S2O32−) concentrations in addition to nitrate. The new approach provides data with great vertical and spatiotemporal resolution. The method can be applied to UV-spectrometer output data from SUNAs and ISUS nitrate sensors commonly deployed on various observing platforms. We validated the technique in the field by matching shipboard NO2 bottle data with float data from the Eastern Tropical North Pacific (ETNP) and Eastern Tropical South Pacific (ETSP) ODZs. We then show a complete time series of three floats as study cases. The ability to detect NO2 and S2O32− concomitantly with other key chemical variables (i.e., oxygen, pH, and bio-optics) at such fine scale allows for novel insights into the nitrogen and sulfur cycling of ODZs and processes driving these cycles. This new approach will enable fine-scale remote quantification of NO2 and S2O32− to support a better understanding of the biogeochemical transformations happening inside these already-expanding deoxygenated regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信