基于双骨干特征融合的类不平衡下少弹特定发射器识别

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Dian Lv, Zhiyong Yu, Hao Zhang, Jiawei Xie
{"title":"基于双骨干特征融合的类不平衡下少弹特定发射器识别","authors":"Dian Lv,&nbsp;Zhiyong Yu,&nbsp;Hao Zhang,&nbsp;Jiawei Xie","doi":"10.1049/rsn2.70081","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a dual-backbone feature fusion approach to address the few-shot class imbalance problem in specific emitter identification. First, employ the Weighted Random Sampler algorithm to dynamically calculate sampling weights for data preprocessing; Subsequently, by fusing the two single-backbone networks of ResNet50 and ConvNeXt-Tiny, we overcome the hierarchical limitations of their independent feature capture, thereby achieving few-shot multi-scale and multi-level feature extraction while enhancing fine-grained features; Furthermore, we embed Efficient Channel Attention into the dual-backbone networks to achieve dynamic modelling of inter-channel correlations. This method enhances feature attention on ‘minority class’ samples while suppressing redundant information, thereby improving the accuracy, stability and robustness of specific emitter identification under imbalanced data conditions. Experimental results validated on a public Bluetooth dataset demonstrate that the proposed method achieves at least a 6% improvement in recognition rate compared to other commonly used algorithms.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70081","citationCount":"0","resultStr":"{\"title\":\"Dual-Backbone Feature Fusion for Few-Shot Specific Emitter Identification Under Class Imbalance\",\"authors\":\"Dian Lv,&nbsp;Zhiyong Yu,&nbsp;Hao Zhang,&nbsp;Jiawei Xie\",\"doi\":\"10.1049/rsn2.70081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a dual-backbone feature fusion approach to address the few-shot class imbalance problem in specific emitter identification. First, employ the Weighted Random Sampler algorithm to dynamically calculate sampling weights for data preprocessing; Subsequently, by fusing the two single-backbone networks of ResNet50 and ConvNeXt-Tiny, we overcome the hierarchical limitations of their independent feature capture, thereby achieving few-shot multi-scale and multi-level feature extraction while enhancing fine-grained features; Furthermore, we embed Efficient Channel Attention into the dual-backbone networks to achieve dynamic modelling of inter-channel correlations. This method enhances feature attention on ‘minority class’ samples while suppressing redundant information, thereby improving the accuracy, stability and robustness of specific emitter identification under imbalanced data conditions. Experimental results validated on a public Bluetooth dataset demonstrate that the proposed method achieves at least a 6% improvement in recognition rate compared to other commonly used algorithms.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70081\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70081\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70081","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种双骨干特征融合方法来解决特定发射器识别中的少射类不平衡问题。首先,采用加权随机采样算法动态计算采样权值进行数据预处理;随后,通过融合ResNet50和ConvNeXt-Tiny两个单骨干网络,克服了它们独立特征捕获的层次性限制,实现了少拍多尺度、多层次的特征提取,同时增强了细粒度特征;此外,我们将高效信道关注嵌入到双骨干网络中,以实现信道间相关性的动态建模。该方法在抑制冗余信息的同时,增强了对“少数类”样本的特征关注,从而提高了非平衡数据条件下特定发射器识别的准确性、稳定性和鲁棒性。在公共蓝牙数据集上的实验结果表明,与其他常用算法相比,该方法的识别率至少提高了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Backbone Feature Fusion for Few-Shot Specific Emitter Identification Under Class Imbalance

Dual-Backbone Feature Fusion for Few-Shot Specific Emitter Identification Under Class Imbalance

This paper proposes a dual-backbone feature fusion approach to address the few-shot class imbalance problem in specific emitter identification. First, employ the Weighted Random Sampler algorithm to dynamically calculate sampling weights for data preprocessing; Subsequently, by fusing the two single-backbone networks of ResNet50 and ConvNeXt-Tiny, we overcome the hierarchical limitations of their independent feature capture, thereby achieving few-shot multi-scale and multi-level feature extraction while enhancing fine-grained features; Furthermore, we embed Efficient Channel Attention into the dual-backbone networks to achieve dynamic modelling of inter-channel correlations. This method enhances feature attention on ‘minority class’ samples while suppressing redundant information, thereby improving the accuracy, stability and robustness of specific emitter identification under imbalanced data conditions. Experimental results validated on a public Bluetooth dataset demonstrate that the proposed method achieves at least a 6% improvement in recognition rate compared to other commonly used algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信