medimatch:使用XGBoost算法预测细菌在不同培养基上的生长

IF 5.2 2区 生物学
Jianhan Liu, Guoshun Xu, Wuge Liu, Tuoyu Liu, Yanjun Li, Tao Tu, Huiying Luo, Ningfeng Wu, Bin Yao, Jian Tian, Jie Zhang, Feifei Guan
{"title":"medimatch:使用XGBoost算法预测细菌在不同培养基上的生长","authors":"Jianhan Liu,&nbsp;Guoshun Xu,&nbsp;Wuge Liu,&nbsp;Tuoyu Liu,&nbsp;Yanjun Li,&nbsp;Tao Tu,&nbsp;Huiying Luo,&nbsp;Ningfeng Wu,&nbsp;Bin Yao,&nbsp;Jian Tian,&nbsp;Jie Zhang,&nbsp;Feifei Guan","doi":"10.1111/1751-7915.70245","DOIUrl":null,"url":null,"abstract":"<p>Microorganism culturing is essential in microbiological research, with the selection of suitable culture media being critical for successful microbial growth. Traditionally, this selection has relied on empirical knowledge or trial and error, often resulting in inefficiency. In this study, we analysed nutrient compositions from the MediaDive database to construct a dataset of 2369 media types. Leveraging this dataset and microbial 16S rRNA sequences, we developed 45 binary classification models using the XGBoost algorithm. These models demonstrated strong predictive performance, achieving accuracies ranging from 76% to 99.3%, with the top-performing models for J386, J50 and J66 media reaching 99.3%, 98.9% and 98.8%, respectively. The models effectively predicted growth conditions for various human gut microbes, confirming their practical utility. This research improves the efficiency of microbial cultivation and highlights the potential of machine learning to optimise culture media selection and advance microbiological studies.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 10","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70245","citationCount":"0","resultStr":"{\"title\":\"MediaMatch: Prediction of Bacterial Growth on Different Culture Media Using the XGBoost Algorithm\",\"authors\":\"Jianhan Liu,&nbsp;Guoshun Xu,&nbsp;Wuge Liu,&nbsp;Tuoyu Liu,&nbsp;Yanjun Li,&nbsp;Tao Tu,&nbsp;Huiying Luo,&nbsp;Ningfeng Wu,&nbsp;Bin Yao,&nbsp;Jian Tian,&nbsp;Jie Zhang,&nbsp;Feifei Guan\",\"doi\":\"10.1111/1751-7915.70245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microorganism culturing is essential in microbiological research, with the selection of suitable culture media being critical for successful microbial growth. Traditionally, this selection has relied on empirical knowledge or trial and error, often resulting in inefficiency. In this study, we analysed nutrient compositions from the MediaDive database to construct a dataset of 2369 media types. Leveraging this dataset and microbial 16S rRNA sequences, we developed 45 binary classification models using the XGBoost algorithm. These models demonstrated strong predictive performance, achieving accuracies ranging from 76% to 99.3%, with the top-performing models for J386, J50 and J66 media reaching 99.3%, 98.9% and 98.8%, respectively. The models effectively predicted growth conditions for various human gut microbes, confirming their practical utility. This research improves the efficiency of microbial cultivation and highlights the potential of machine learning to optimise culture media selection and advance microbiological studies.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70245\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微生物培养在微生物学研究中是必不可少的,选择合适的培养基是微生物成功生长的关键。传统上,这种选择依赖于经验知识或试错,往往导致效率低下。在这项研究中,我们分析了MediaDive数据库中的营养成分,构建了一个包含2369种介质类型的数据集。利用该数据集和微生物16S rRNA序列,我们使用XGBoost算法开发了45个二元分类模型。这些模型表现出了很强的预测性能,准确率从76%到99.3%不等,其中J386、J50和J66介质的最佳模型分别达到99.3%、98.9%和98.8%。这些模型有效地预测了各种人类肠道微生物的生长条件,证实了它们的实用性。这项研究提高了微生物培养的效率,并突出了机器学习在优化培养基选择和推进微生物学研究方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MediaMatch: Prediction of Bacterial Growth on Different Culture Media Using the XGBoost Algorithm

MediaMatch: Prediction of Bacterial Growth on Different Culture Media Using the XGBoost Algorithm

Microorganism culturing is essential in microbiological research, with the selection of suitable culture media being critical for successful microbial growth. Traditionally, this selection has relied on empirical knowledge or trial and error, often resulting in inefficiency. In this study, we analysed nutrient compositions from the MediaDive database to construct a dataset of 2369 media types. Leveraging this dataset and microbial 16S rRNA sequences, we developed 45 binary classification models using the XGBoost algorithm. These models demonstrated strong predictive performance, achieving accuracies ranging from 76% to 99.3%, with the top-performing models for J386, J50 and J66 media reaching 99.3%, 98.9% and 98.8%, respectively. The models effectively predicted growth conditions for various human gut microbes, confirming their practical utility. This research improves the efficiency of microbial cultivation and highlights the potential of machine learning to optimise culture media selection and advance microbiological studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信